Coherence is one of the most important properties of light, which describes the correlation of the phase of two different fields separated by space and time. Light sources with different degree of coherence are applied to different situations. For examples, lasers with high degree of coherence can be used to produce speckles; partial coherent lights are less affected by atmospheric turbulence, and hence are useful in communications. In view of the inherent randomness of spontaneous emission, it would be more accurate to model lights by means of random processes than deterministic signals, which are assumed in the configuration under wave optics. Besides, Fourier optics provides an essential theory for signal processing. Combining Fourier optics and coherence theory would lead to a promising realm, which is called Phase-space optics.
The goal of this thesis is not only to introduce the foregoing knowledge in turns, but also to give the big picture of coherence theory and related subjects.
一、緒論(p.1)
二、傅立葉光學(p.3)
2.1 傅立葉轉換(p.3)
2.1.1 定義(p.3)
2.1.2 存在條件(p.5)
2.1.3 由向量投影解釋傅立葉轉換(p.5)
2.2 線性位移不變系統(p.8)
2.2.1 線性(p.8)
2.2.2 位移不變性(p.9)
2.2.3 線性位移不變系統(p.10)
2.2.4 討論(p.12)
2.3 摺積與相關函數(p.13)
2.3.1 摺積(p.13)
2.3.1.1 定義(p.13)
2.3.1.2 討論(p.16)
2.3.2 相關函數(p.16)
2.3.2.1 定義(p.17)
2.3.2.2 基本性質(p.19)
2.4光學傳遞系統與繞射公式(p.20)
2.4.1 角頻譜(p.21)
2.4.2 瑞利-索末菲繞射(p.23)
2.4.3 菲涅耳繞射公式(p.24)
2.4.4 夫朗和斐繞射(p.26)
2.5 干涉與繞射(p.26)
2.5.1 干涉(p.27)
2.5.2 繞射(p.29)
2.6 章節總結(p.32)
三、隨機過程(p.33)
3.1 隨機變數(p.33)
3.1.1 定義(p.33)
3.1.2 期望值與動差(p.38)
3.1.3 兩個隨機變數(p.41)
3.2 隨機向量(p.45)
3.3 隨機過程(p.47)
3.3.1 定義(p.47)
3.3.2 相關函數(p.54)
3.3.3 平穩性與遍歷性(p.56)
3.3.4 功率頻譜密度(p.63)
3.4 章節總結(p.65)
四、同調理論(p.67)
4.1 以隨機過程詮釋光場(p.67)
4.2 時間同調性、空間同調性及同調函數(p.70)
4.2.1 時間同調性(p.71)
4.2.2 空間同調性(p.74)
4.2.3 以向量和詮釋交互強度函數(p.80)
4.3 van Cittert-Zernike theorem(p.84)
4.4 章節總結(p.90)
五、相位光學(p.92)
5.1 文獻回顧(p.94)
5.1.1 〈Radiometry and Coherence〉(p.94)
5.1.1.1 座標轉換(p.95)
5.1.1.2 廣義輻射亮度與韋格納分佈函數 (p.96)
5.1.1.3 章節總結(p.97)
5.1.2〈Wigner Distributions and How They Relate to the Light Field〉(p.98)
5.1.2.1 引述〈Radiometry and Coherence〉(p.98)
5.1.2.2 光場(Light Field)與韋格納分佈函數(p.100)
5.1.2.3 章節總結(p.103)
5.1.3〈Validity of Wigner Distribution Function for Ray-based Imaging〉(p.104)
5.1.3.1 韋格納分佈函數之詮釋(p.104)
5.1.3.2 韋格納分佈函數之基本性質(p.104)
5.1.3.3 近軸近似(p.105)
5.2 質疑:對於韋格納分佈函數之普遍理解(p.106)
5.2.1 座標轉換之物理意義(p.106)
5.2.2〈Radiometry and Coherence〉公式推導之缺失(p.109)
六、總結與未來展望(p.111)
6.1 總結(p.111)
6.2 未來展望(p.112)
引用(p.113)
1. M. G. Raymer, M. Beck, and D. McAlister, "Complex wave-field reconstruction using phase-space tomography," Physical Review Letters, vol. 72, pp. 1137-1140, 02/21/ 1994.
2. E. R. Dowski and W. T. Cathey, "Extended depth of field through wave-front coding," Applied Optics, vol. 34, pp. 1859-1866, 1995/04/10 1995.
3. M. L. Z. Zhang, "Wigner distributions and how they relate to the light field," in Computational Photography (ICCP), 2009 IEEE International Conference on, 2009, pp. 1-10.
4. A. Semichaevsky and M. Testorf, "Phase-space interpretation of deterministic phase retrieval," Journal of the Optical Society of America A, vol. 21, pp. 2173-2179, 2004/11/01 2004.
5. J. W. Goodman, Introduction to Fourier Optics: McGraw-Hill, 2005.
6. D. C. Champeney, Fourier Transforms and Their Physical Applications: Academic Press, 1973.
7. D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability: Athena Scientific, 2002.
8. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4 ed.: McGraw-Hill 2002.
9. But Why? Intuitive Mathematics: The Fourier Transform. Available: https://sites.google.com/site/butwhymath/fourier-analysis/the-fourier-transform
10. J. L. Melsa and A. P. Sage, An Introduction to Probability and Stochastic Processes: Courier Corporation, 2013.
11. O. Sarig, Lecture Notes on Ergodic Theory, 2009.
12. N. Wiener, Time series: M.I.T. Press, 1964.
13. X. R. Li, Probability, Random Signals, and Statistics: CRC Press, 1999.
14. J. W. Goodman, Statistical Optics: Wiley-Interscience, 1985.
15. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light: Cambridge University Press, 2007.
16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics: Wiley-Interscience, 2007.
17. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics Cambridge University Press, 1995.
18. E. Wigner, "On the Quantum Correction For Thermodynamic Equilibrium," Physical Review, vol. 40, pp. 749-759, 06/01/ 1932.
19. M. E. Testorf, B. M. Hennelly, and J. Ojeda-Castañeda, Phase-Space Optics: Fundamentals and Applications: McGraw-Hill, 2010.
20. A. Walther, "Radiometry and Coherence," Journal of the Optical Society of America, vol. 58, pp. 1256-1259, 1968/09/01 1968.
21. H.-C. Lee, Introduction to Color Imaging Science: Cambridge University Press, 2005.
22. A. Ashok and M. A. Neifeld, "Compressive light field imaging," in Proc. SPIE, 2010, p. 76900Q.
23. C.-K. Liang, Y.-C. Shih, and H. H. Chen, "Light Field Analysis for Modeling Image Formation," Image Processing, IEEE Transactions on, vol. 20, pp. 446-460, 2011.
24. B. Javidi and Y. Frauel, "Three-dimensional object visualization and recognition based on computational integral imaging," 2003, pp. 22-29.
25. R. Ng, "Digital light field photography," PhD, Stanford, CA, USA, 2006.
26. J. T. Foley and E. Wolf, "Radiometry as a short-wavelength limit of statistical wave theory with globally incoherent sources," Optics Communications, vol. 55, pp. 236-241, 9/15/ 1985.
27. K. Kim and E. Wolf, "Propagation law for Walther’s first generalized radiance function and its short-wavelength limit with quasi-homogeneous sources," Journal of the Optical Society of America A, vol. 4, pp. 1233-1236, 1987/07/01 1987.
28. A. T. Friberg, "On the existence of a radiance function for finite planar sources of arbitrary states of coherence," Journal of the Optical Society of America, vol. 69, pp. 192-198, 1979/01/01 1979.
29. E. W. Marchand and E. Wolf, "Walther’s definitions of generalized radiance," Journal of the Optical Society of America, vol. 64, pp. 1273-1274, 1974/09/01 1974.
30. T. Cuypers, R. Horstmeyer, O. Se Baek, P. Bekaert, and R. Raskar, "Validity of Wigner Distribution Function for ray-based imaging," in Computational Photography (ICCP), 2011 IEEE International Conference on, 2011, pp. 1-9.
31. M. J. Bastiaans, "Application of the Wigner distribution in optics," in The Wigner Distribution - Theory and Applications in Signal Processing, 1 ed: Elsevier Science, 1997.
32. M. A. Alonso, "Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space," Journal of the Optical Society of America A, vol. 21, pp. 2233-2243, 2004/11/01 2004.
33. L. Tian, Z. Zhang, J. C. Petruccelli, and G. Barbastathis, "Wigner function measurement using a lenslet array," Optics Express, vol. 21, pp. 10511-10525, 2013/05/06 2013.
34. L. Waller, G. Situ, and J. W. Fleischer, "Phase-space measurement and coherence synthesis of optical beams," Nat Photon, vol. 6, pp. 474-479, 07//print 2012.