摘要:
结构健康监测(SHM)技术在许多大型桥梁的运营养护管理中均有应用,但已有监测系统积累的海量数据并未被充分解读。为将大数据技术引入到桥梁SHM数据的处理分析中,首先总结大数据的概念和构成要素;然后分析SHM数据的工业大数据属性,梳理桥梁SHM大数据的研究方向;随后综述包括处理技术和分析方法在内的大数据技术在桥梁SHM中的应用现状,在由数据预处理、数据融合、特征工程、模式识别、可视化构成的大数据分析流程中提出SHM大数据研究的需求和应用场景;最后对大数据技术在桥梁SHM中的前景与驱动力进行展望和讨论。结果表明:SHM大数据研究应以结构状态评估为落脚点;大数据处理技术在SHM的系统框架搭建及数据分析能力扩展方面虽已得到较多应用,但其并非SHM大数据研究的重点;SHM数据融合对大数据分析方法有迫切需求,以实现桥梁SHM数据与外观检测等多源异构数据的多层面融合;深度学习、集成学习为结构状态敏感特征的提取提供了新的算法;有监督、无监督机器学习方法结合海量SHM数据将对结构状态评估下的模式识别问题形成更全面的认知;异常识别、相关分析、迁移学习等方法可为实桥SHM损伤识别提供支撑。研究结果可为SHM领域的大数据研究提供参考。
Abstract:
The structural health monitoring (SHM) technique has been adopted for use with many large span bridges. However, massive SHM data have not been well interpreted to support structural maintenance and management. In this study, to introduce big data techniques into bridge SHM for data processing and analysis, the concepts and components of big data were first summarized, and data properties and research directions of SHM were then analyzed. Big data techniques applied to bridge SHM were then reviewed according to computing techniques and data analysis methods, based on which the requirements and application scenarios for SHM were presented in a big data analysis pipeline consisting of data preprocessing, data fusion, feature engineering, pattern recognition, and data visualization. Finally, the prospects and motivations of big data techniques in bridge SHM were generalized. The results demonstrate that structural condition assessment should be the primary application scenario for employing big data techniques in SHM. Computing techniques are not the priorities of big data research in SHM even though they do have some applications. Data fusion that aims to fuse multisource and heterogeneous data from SHM system and bridge management system urgently requires support from big data analysis methods. Ensemble learning and deep learning provide new methods to extract features that are sensitive to structural conditions and enable new prospects for SHM research. Supervised and unsupervised learning methods combined with massive monitoring data enable a more comprehensive understanding of pattern recognition problems in SHM than with a small amount of data. Novelty detection, correlation analysis, and transfer learning can be verified in damage detection problems and further developed to support their applications in real bridges. This study is expected to provide a reference for big data research in bridge SHM.
Key words:
bridge engineering,
structural health monitoring,
review,
big data,
structural condition assessment,
damage detection
[1] HOUSNER G W, BERGMAN L A, CAUGHEY T K, et al. Structural Control:Past, Present, and Future[J]. Journal of Engineering Mechanics, 1997, 123(9):897-971.
[2] AKTAN A E, FARHEY D N, BROWN D L, et al. Condition Assessment for Bridge Management[J]. Journal of Infrastructure Systems, 1996, 2(3):108-117.
[3] FARRAR C R, WORDEN K. An Introduction to Structural Health Monitoring[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2007, 365(1851):303-315.
[4] ZHANG Qi-wei. Statistical Damage Identification for Bridges Using Ambient Vibration Data[J]. Computers and Structures, 2007, 85(7):476-485.
[5] 张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,2001,29(1):65-69.ZHANG Qi-wei. Conception of Long-span Bridge Health Monitoring and Monitoring System Design[J]. Journal of Tongji University, 2001, 29(1):65-69.
[6] SUN L M, SUN Z, DAN D H, et al. Large-span Bridge and Their Health Monitoring Systems in China[C]//FAN L C, SUN L M, SUN Z. Proceedings of 2007 International Symposium on Integrated Life-cycle Design and Management of Infrastructure. Shanghai:Tongji University Press, 2007:79-95.
[7] BROWNJOHN J M W, DE STEFANO A, XU Y L, et al. Vibration-based Monitoring of Civil Infrastructure:Challenges and Successes[J]. Journal of Civil Structural Health Monitoring, 2011, 1(3/4):79-95.
[8] FAN W, BIFET A. Mining Big Data:Current Status, and Forecast to the Future[J]. ACM SIGKDD Explorations Newsletter, 2013, 14(2):1-5.
[9] BEYER M A, LANEY D. The Importance of "Big Data":A Definition[R]. Stamford:Gartner, 2012.
[10] MAYER-SCHÖNBERGER V, CUKIER K. Big Data:A Revolution That Transforms How We Work, Live, and Think[M]. Boston:Houghton Mifflin Harcourt, 2012.
[11] GANTZ J, REINSEL D. Extracting Value from Chaos[J]. IDC Iview, 2011, 1142(2011):1-12.
[12] WARD J S, BARKER A. Undefined by Data:A Survey of Big Data Definitions[J]. ArXiv Preprint, 2013, 1309:1-12.
[13] DEMCHENKO Y, GROSSO P, DE L C, et al. Addressing Big Data Issues in Scientific Data Infrastructure[C]//FOX G, SMARI W W. Proceedings of 2013 International Conference on Collaboration Technologies and Systems (CTS). New York:IEEE, 2013:48-55.
[14] GINSBERG J, MOHEBBI M H, PATEL R S, et al. Detecting Influenza Epidemics Using Search Engine Query Data[J]. Nature, 2009, 457(7232):1012-1014.
[15] ZHENG Y, LIU F, HSIEH H P. U-Air:When Urban Air Quality Inference Meets Big Data[C]//GHANI R, SENATOR T E, BRADLEY P, et al. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago:ACM, 2013:1436-1444.
[16] NATE S. The Signal and the Noise:Why So Many Predictions Fail-But Some Don't[M]. London:Penguin Press, 2013.
[17] NAJAFABADI M M, VILLANUSTRE F, KHOSHGOFTAAR T M, et al. Deep Learning Applications and Challenges in Big Data Analytics[J]. Journal of Big Data, 2015, 2(1):1-21.
[18] TAN P N, MICHAEL S, KUMAR V. Introduction to Data Mining[M]. New York:Pearson Education, 2006.
[19] CHEN M, MAO S, LIU Y H. Big Data:A Survey[J]. Mobile Networks and Applications, 2014, 19(2):171-209.
[20] DONG X L, SRIVASTAVA D. Big Data Integration[C]//CHEE Y, CHAN J H, LU K, et al. 2013 IEEE 29th International Conference on Data Engineering (ICDE). New York:IEEE, 2013:1245-1248.
[21] ASAY M. 85% of Big Data Projects Fail, but Your Developers Can Help Yours Succeed[EB/OL]. (2017-11-10)[2018-07-15]. https://www.techrepublic.com/article/85-of-big-data-projects-fail-but-your-developers-can-help-yours-succeed/.
[22] 中国电子技术标准化研究院.工业大数据白皮书(2017版)[R].北京:中国电子技术标准化研究院,2017.China Electronics Standardization Institute. White Paper on Industrial Big Data (2017 Edition)[R]. Beijing:China Electronics Standardization Institute, 2017.
[23] 田春华.工业大数据分析的误区与建议[EB/OL].(2016-08-24)[2018-07-15].http://www.sohu.com/a/111798421_473476.TIAN Chun-hua. Misunderstandings and Suggestions for Industrial Big Data Analysis[EB/OL]. (2016-08-24)[2018-07-15]. http://www.sohu.com/a/111798421_473476.
[24] DOEBLING S W, FARRAR C R, PRIME M B. A Summary Review of Vibration-based Damage Identification Methods[J]. Shock and Vibration Digest, 1998, 30(2):91-105.
[25] AKTAN E, BROWN D, FARRAR C, et al. Objective Global Condition Assessment[C]//GOLDSTEIN D H, CHIPMAN R A. Proceedings of SPIE-The International Society for Optical Engineering. San Diego:SPIE International Society for Optical, 1997:364-373.
[26] LIANG Y, WU D L, LIU G R, et al. Big Data-enabled Multiscale Serviceability Analysis for Aging Bridges[J]. Digital Communications and Networks, 2016, 2(3):97-107.
[27] JEONG S, ZHANG Y L, HOU R, et al. A Cloud Based Information Repository for Bridge Monitoring Applications[J]. Proceedings of SPIE, 2016, 9803:980313.
[28] ALAMPALLI S, ALAMPALLI S, ETTOUNEY M. Big Data and High-performance Analytics in Structural Health Monitoring for Bridge Management[J]. Proceedings of SPIE, 2016, 9803:980315.
[29] 朱晓斌,周应新,杨建喜,等.基于大数据的桥梁监测信息聚类分析[J].公路交通科技:应用技术版,2015(4):167-169.ZHU Xiao-bin, ZHOU Ying-xin, YANG Jian-xi, et al. Big Data-based Clustering Analysis for Bridge Structural Health Monitoring[J]. Journal of Highway Communication Technology:Applied Technology Edition, 2015(4):167-169.
[30] YU L, LIN J C. Cloud Computing-based Time Series Analysis for Structural Damage Detection[J]. Journal of Engineering Mechanics, 2015, 143(1):C4015002.
[31] VESPIER U, KNOBBE A, VANSCHOREN J, et al. Traffic Events Modeling for Structural Health Monitoring[C]//GAMA J, BRADLEY E, HOLLMEN J. International Symposium on Intelligent Data Analysis. Porto:Springer, 2011:376-387.
[32] CAI G W, MAHADEVAN S. Model Calibration with Big Data[C]//BARTHORPE R, PLATZ R, LOPEZ I, et al. Conference Proceedings of the Society for Experimental Mechanics Series. Cham:Springer, 2017:315-322.
[33] 骆剑彬,姜绍飞,任晖,等.Spark云计算平台下的结构物理参数辨识[J].振动与冲击,2018,37(14):009.LUO Jian-bin, JIANG Shao-fei, REN Hui, et al. Structural Physical Parameter Identification Based on the Spark Cloud Computing Platform[J]. Journal of Vibration and Shock, 2018, 37(14):009.
[34] KHAZAELI S, RAVANDI A G, BANERJI S, et al. The Application of Data Mining and Cloud Computing Techniques in Data-driven Models for Structural Health Monitoring[J]. Proceedings of SPIE, 2016, 9805:98052M.
[35] HAN J W, PEI J, KAMBER M. Data Mining:Concepts and Techniques[M]. New York:Elsevier, 2011.
[36] 姜绍飞.结构健康监测智能信息处理及应用[J].工程力学,2009,26(增2):184-212.JIANG Shao-fei. Structural Health Monitoring-intelligent Information Processing and Application[J]. Engineering Mechanics, 2009, 26(S2):184-212.
[37] DIEZ A, KHOA N L D, ALAMDARI M M, et al. A Clustering Approach for Structural Health Monitoring on Bridges[J]. Journal of Civil Structural Health Monitoring, 2016, 6(3):429-445.
[38] BAO Y Q, TANG Z Y, LI H, et al. Computer Vision and Deep Learning-based Data Anomaly Detection Method for Structural Health Monitoring[J]. Structural Health Monitoring, 2019, 18(2):1-21.
[39] 唐浩,谭川,陈果.桥梁健康监测数据分析研究综述[J].公路交通技术,2014(5):99-104.TANG Hao, TAN Chuan, CHEN Guo. Overview of Analysis and Research on Health Monitoring Data of Bridges[J]. Technology of Highway and Transport, 2014(5):99-104.
[40] 刘涛,李爱群,缪长青,等.基于数据融合的结构损伤识别方法研究[J].工程力学,2008,25(1):16-21.LIU Tao, LI Ai-qun, MIAO Chang-qing, et al. Study of Structural Damage Identification Methods Based on Data Fusion[J]. Engineering Mechanics, 2008, 25(1):16-21.
[41] XU Y, BROWNJOHN J M W, HESTER D, et al. Long-span Bridges:Enhanced Data Fusion of Gps Displacement and Deck Accelerations[J]. Engineering Structures, 2017, 147:639-651.
[42] 孟小峰,杜治娟.大数据融合研究:问题与挑战[J].计算机研究与发展,2016,53(2):231-246.MENG Xiao-feng, DU Zhi-juan. Research on the Big Data Fusion:Issues and Challenges[J]. Journal of Computer Research and Development, 2016, 53(2):231-246.
[43] 聂功武,孙利民.桥梁养护巡检与健康监测系统信息的融合[J].上海交通大学学报,2011,45(增):104-108,114.NIE Gong-wu, SUN Li-min. Integration of Inspection and Structural Health Monitoring System for Bridge Management[J]. Journal of Shanghai Jiaotong University, 2011, 45(S):104-108, 114.
[44] CHA Y J, CHOI W, SUH G, et al. Autonomous Structural Visual Inspection Using Region-based Deep Learning for Detecting Multiple Damage Types[J]. Computer-aided Civil and Infrastructure Engineering, 2018, 33(9):731-747.
[45] 黄宏伟,李庆桐.基于深度学习的盾构隧道渗漏水病害图像识别[J].岩石力学与工程学报,2017,36(12):2861-2871.HUANG Hong-wei, LI Qing-tong. Water Leakage Image Recognition of Shield Tunnel by Deep Learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12):2861-2871.
[46] CHEN Z C, LI H, BAO Y Q, et al. Identification of Spatio-temporal Distribution of Vehicle Loads on Long-span Bridges Using Computer Vision Technology[J]. Structural Control and Health Monitoring, 2016, 23(3):517-534.
[47] FENG D M, FENG M Q. Computer Vision for SHM of Civil Infrastructure:From Dynamic Response Measurement to Damage Detection-a Review[J]. Engineering Structures, 2018, 156:105-117.
[48] 刘小玲,黄侨,任远,等.斜拉桥多指标证据融合的综合评估方法[J].哈尔滨工业大学学报,2017,49(3):74-79.LIU Xiao-ling, HUANG Qiao, REN Yuan, et al. Comprehensive Evaluation Method of Cable-stayed Bridges with Multi-index Evidence Fusion[J]. Journal of Harbin Institute of Technology, 2017, 49(3):74-79.
[49] HUANG T, LAN L, FANG X X, et al. Promises and Challenges of Big Data Computing in Health Sciences[J]. Big Data Research, 2015, 2(1):2-11.
[50] YESILYURT I, GURSOY H. Estimation of Elastic and Modal Parameters in Composites Using Vibration Analysis[J]. Journal of Vibration and Control, 2013, 21(3):509-524.
[51] WU N,WANG Q. Experimental Studies on Damage Detection of Beam Structures with Wavelet Transform[J]. International Journal of Engineering Science, 2011, 49(3):253-261.
[52] SUN Z, CHANG C C. Structural Damage Assessment Based on Wavelet Packet Transform[J]. Journal of Structural Engineering, 2002, 128(10):1354-1361.
[53] HESTER D, GONZÁLEZ A. A Wavelet-based Damage Detection Algorithm Based on Bridge Acceleration Response to a Vehicle[J]. Mechanical Systems and Signal Processing, 2012, 28:145-166.
[54] SUAREZ E, BENAVENT C A, MOLINA C R, et al. Wavelet Energy Ratio Index for Health Monitoring of Hysteretic Dampers[J]. Structural Control and Health Monitoring, 2018, 25(2):e2071.
[55] ROVERI N, CARCATERRA A. Damage Detection in Structures Under Traveling Loads by Hilbert-huang Transform[J]. Mechanical Systems and Signal Processing, 2012, 28:128-144.
[56] KUNWAR A, JHA R, WHELAN M, et al. Damage Detection in an Experimental Bridge Model Using Hilbert-huang Transform of Transient Vibrations[J]. Structural Control and Health Monitoring, 2013, 20(1):1-15.
[57] PAN H, AZIMI M, YAN F, et al. Time-frequency-based Data-driven Structural Diagnosis and Damage Detection for Cable-stayed Bridges[J]. Journal of Bridge Engineering, 2018, 23(6):04018033.
[58] ZHANG L Y, SUN L M, SHANG Z Q. Real-time Reliability Assessment Based on Acceleration Monitoring for Bridge[J]. Science China Technological Sciences, 2016, 59(8):1294-1304.
[59] 焦美菊,孙利民,李清富.基于监测数据的桥梁结构可靠性评估[J].同济大学学报:自然科学版,2011,39(10):1452-1457.JIAO Mei-ju, SUN Li-min, LI Qing-fu. Bridge Structural Reliability Assessment Based on Health Monitoring Data[J]. Journal of Tongji University:Natural Science, 2011, 39(10):1452-1457.
[60] 周毅,孙利民,谢谟文,等.桥梁模态频率与运营环境作用的相关性[J].工程科学学报,2018,40(3):276-284.ZHOU Yi, SUN Li-min, XIE Mo-wen, et al. Correlation of Modal Frequency Variation for a Bridge with Operational and Environmental Actions[J]. Chinese Journal of Engineering, 2018, 40(3):276-284.
[61] CURY A, CRÉMONA C, DIDAY E. Application of Symbolic Data Analysis for Structural Modification Assessment[J]. Engineering Structures, 2010, 32(3):762-775.
[62] AMEZQUITA-SANCHEZ J P, ADELI H. Signal Processing Techniques for Vibration-based Health Monitoring of Smart Structures[J]. Archives of Computational Methods in Engineering, 2014, 23(1):1-15.
[63] LIU W J, CHEN B, SWARTZ R A. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition[J]. The Scientific World Journal, 2013, 2013:1-13.
[64] NGUYEN T, CHAN T H, THAMBIRATNAM D P. Controlled Monte Carlo Data Generation for Statistical Damage Identification Employing Mahalanobis Squared Distance[J]. Structural Health Monitoring, 2014, 13(4):461-472.
[65] FARAHANI R V, PENUMADU D. Damage Identification of a Full-scale Five-girder Bridge Using Time-series Analysis of Vibration Data[J]. Engineering Structures, 2016, 115:129-139.
[66] CARDEN E P, BROWNJOHN J M W. A RMA Modelled Time-series Classification for Structural Health Monitoring of Civil Infrastructure[J]. Mechanical Systems and Signal Processing, 2008, 22(2):295-314.
[67] LO C, LYNCH J P, LIU M. Distributed Reference-free Fault Detection Method for Autonomous Wireless Sensor Networks[J]. IEEE Sensors Journal, 2013, 13(5):2009-2019.
[68] 周毅.基于SHM的斜拉桥运营环境作用的影响分析[D].上海:同济大学,2015.ZHOU Yi. Action Effects Analysis of Cable-stayed Bridges in Operational Conditions Based on SHM[D]. Shanghai:Tongji University, 2015.
[69] 孙利民,周毅,谢大圻.环境因素对斜拉桥模态频率影响的周期特性[J].同济大学学报:自然科学版,2015,43(10):1454-1462.SUN Li-min, ZHOU Yi, XIE Da-qi. Periodic Characteristics of Environmental Effects on Modal Frequencies of a Cable-stayed Bridge[J]. Journal of Tongji University:Natural Science, 2015, 43(10):1454-1462.
[70] WEN X L, LEI W, DAN D H, et al. Study on a Measurement Index of Transverse Collaborative Working Performance of Prefabricated Girder Bridges[J]. Advances in Structural Engineering, 2017, 20(12):1879-1890.
[71] SANTOS J P, CRÉMONA C, ORCESI A D, et al. Multivariate Statistical Analysis for Early Damage Detection[J]. Engineering Structures, 2013, 56:273-285.
[72] 叶肖伟,刘坦,董传智,等.基于卡尔曼滤波和中性轴位置的结构损伤识别[J].浙江大学学报:工学版,2017,51(10):2012-2018.YE Xiao-wei, LIU Tan, DONG Chuan-zhi, et al. Structural Damage Detection Based on Kalman Filter and Neutral Axis Location[J]. Journal of Zhejiang University:Engineering Science, 2017, 51(10):2012-2018.
[73] XIA Y, WANG P, SUN L M. Neutral Axis Based Health Monitoring and Condition Assessment Techniques for Concrete Box Girder Bridges[J]. International Journal of Structural Stability and Dynamics, 2018, 19(1):1940015.
[74] LI S L, WEI S Y, BAO Y Q, et al. Condition Assessment of Cables by Pattern Recognition of Vehicle-induced Cable Tension Ratio[J]. Engineering Structures, 2018, 155:1-15.
[75] CHEN Z W, CAI Q L, LEI Y, et al. Damage Detection of Long-span Bridges Using Stress Influence Lines Incorporated Control Charts[J]. Science China Technological Sciences, 2014, 57(9):1689-1697.
[76] SUN S W, SUN L M, CHEN L. Damage Detection Based on Structural Responses Induced by Traffic Load:Methodology and Application[J]. International Journal of Structural Stability and Dynamics, 2016, 16(4):1640026.
[77] YING Y J, GARRETT J J H, OPPENHEIM I J, et al. Toward Data-driven Structural Health Monitoring:Application of Machine Learning and Signal Processing to Damage Detection[J]. Journal of Computing in Civil Engineering, 2012, 27(6):667-680.
[78] LIN Y Z, NIE Z H, MA H W. Structural Damage Detection with Automatic Feature-extraction Through Deep Learning[J]. Computer-aided Civil and Infrastructure Engineering, 2017, 32(12):1025-1046.
[79] GUO J Q, XIE X B, BIE R F, et al. Structural Health Monitoring by Using a Sparse Coding-based Deep Learning Algorithm with Wireless Sensor Networks[J]. Personal and Ubiquitous Computing, 2014, 18(8):1977-1987.
[80] RAFIEI M H, ADELI H. A Novel Unsupervised Deep Learning Model for Global and Local Health Condition Assessment of Structures[J]. Engineering Structures, 2018, 156:598-607.
[81] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning[M]. Cambridge:MIT Press, 2016.
[82] SOHN H, FARRAR C R. Damage Diagnosis Using Time Series Analysis of Vibration Signals[J]. Smart Materials and Structures, 2001, 10(3):446-451.
[83] 闵志华,孙利民,仲政.环境温度对斜拉桥动力特性的影响分析[J].同济大学学报:自然科学版,2011,39(4):488-494.MIN Zhi-hua, SUN Li-min, ZHONG Zheng. Effect Analysis of Environmental Temperature on Dynamic Properties of Cable-stayed Bridge[J]. Journal of Tongji University:Natural Science, 2011, 39(4):488-494.
[84] NI Y Q, HUA X G, FAN K Q, et al. Correlating Modal Properties with Temperature Using Long-term Monitoring Data and Support Vector Machine Technique[J]. Engineering Structures, 2005, 27(12):1762-1773.
[85] CURY A, CREMONA C, DUMOULIN J. Long-term Monitoring of a PSC Box Girder Bridge:Operational Modal Analysis, Data Normalization and Structural Modification Assessment[J]. Mechanical Systems and Signal Processing, 2012, 33:13-37.
[86] ZHOU Y, SUN L M. Insights into Temperature Effects on Structural Deformation of a Cable-stayed Bridge Based on Structural Health Monitoring[J]. Structural Health Monitoring, 2018, 18(3):778-791.
[87] FIGUEIREDO E, PARK G, FARRAR C R, et al. Machine Learning Algorithms for Damage Detection Under Operational and Environmental Variability[J]. Structural Health Monitoring, 2011, 10(6):559-572.
[88] LI H, LI S L, OU J P, et al. Modal Identification of Bridges Under Varying Environmental Conditions:Temperature and Wind Effects[J]. Structural Control and Health Monitoring, 2010, 17(5):495-512.
[89] 林友新,周翠,李宏男.基于盲源分离的损伤识别方法[J].地震工程与工程振动,2013,33(6):158-163.LIN You-xin, ZHOU Cui, LI Hong-nan. Damage Identification Method Based on Blind Source Identification[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(6):158-163.
[90] WORDEN K, BALDACCHINO T, ROWSON J, et al. Some Recent Developments in SHM Based on Nonstationary Time Series Analysis[J]. Proceedings of the IEEE, 2016, 104(8):1589-1603.
[91] DING Y L, LI A Q. Temperature-induced Variations of Measured Modal Frequencies of Steel Box Girder for a Long-span Suspension Bridge[J]. International Journal of Steel Structures, 2011, 11(2):145-155.
[92] YAN A M, KERSCHEN G, DE B P, et al. Structural Damage Diagnosis Under Varying Environmental Conditions-Part Ⅱ:Local PCA for Non-linear Cases[J]. Mechanical Systems and Signal Processing, 2005, 19(4):865-880.
[93] KULLAA J. Structural Health Monitoring Under Nonlinear Environmental or Operational Influences[J]. Shock and Vibration, 2014, 2014:863494.
[94] 付春雨,单德山,李乔.基于支持向量机的静力损伤识别方法[J].中国铁道科学,2010,31(5):47-53.FU Chun-yu, SHAN De-shan, LI Qiao. The Static Damage Identification Method Based on the Support Vector Machine[J]. China Railway Science, 2010, 31(5):47-53.
[95] SHU J P, ZHANG Z Y, GONZALEZ I, et al. The Application of a Damage Detection Method Using Artificial Neural Network and Train-induced Vibrations on a Simplified Railway Bridge Model[J]. Engineering Structures, 2013, 52:408-421.
[96] HUO L S, LI X, YANG Y B, et al. Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM[J]. Shock and Vibration, 2016, 2016:3989743.
[97] ADDIN O, SAPUAN S, MAHDI E, et al. A Naïve-bayes Classifier for Damage Detection in Engineering Materials[J]. Materials and Design, 2007, 28(8):2379-2386.
[98] LI Z R, GUO J Q, LIANG W S, et al. Structural Health Monitoring Based on RealAdaBoost Algorithm in Wireless Sensor Networks[C]//CAI Z, WANG C, CHENG S. International Conference on Wireless Algorithms, Systems, and Applications. Cham:Springer, 2014:236-245.
[99] VITOLA J, POZO F, TIBADUIZA D A, et al. A Sensor Data Fusion System Based on K-nearest Neighbor Pattern Classification for Structural Health Monitoring Applications[J]. Sensors, 2017, 17(2):417.
[100] CURY A, CRÉMONA C. Pattern Recognition of Structural Behaviors Based on Learning Algorithms and Symbolic Data Concepts[J]. Structural Control and Health Monitoring, 2012, 19(2):161-186.
[101] LI S W, LAIMA S J, LI H. Data-driven Modeling of Vortex-induced Vibration of a Long-span Suspension Bridge Using Decision Tree Learning and Support Vector Regression[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172:196-211.
[102] MIAO S F, KNOBBE A, KOENDERS E, et al. Analysis of Traffic Effects on a Dutch Highway Bridge[C]//IVANKOVIC M A. Proceedings of IABSE, Assessment, Upgrading and Refurbishment of Infrastructures. Zürich:IABSE, 2013:357-364.
[103] ANDREW N. Deep Learning[EB/OL]. (2017-10-12)[2018-07-25]. https://zh.coursera.org/learn/neural-networks-deep-learning.
[104] 李雪松,林逸洲,马宏伟,等.基于卷积神经网络的桥梁损伤识别方法应用研究[J].青海大学学报,2018,36(2):41-46.LI Xue-song, LIN Yi-zhou, MA Hong-wei, et al. Application of Bridge Damage Identification Based on Convolutional Neural Network[J]. Journal of Qinghai University, 2018, 36(2):41-46.
[105] GULGEC N S, TAKÁ[AKČ] M, PAKZAD S N. Structural Damage Detection Using Convolutional Neural Networks[J]. Model Validation and Uncertainty Quantification 2017, 3:331-337.
[106] PAN H, GUI G Q, LIN Z B, et al. Deep BBN Learning for Health Assessment Toward Decision-making on Structures Under Uncertainties[J]. KSCE Journal of Civil Engineering, 2018, 22(3):928-940.
[107] 谢祥辉,单德山,周筱航.基于堆栈降噪自动编码器的桥梁损伤识别方法[J].铁道建筑,2018,58(5):1-5.XIE Xiang-hui, SHAN De-shan, ZHOU Xiao-hang. Bridge Damage Identification Method Based on Stacked Denoising Autoencoders[J]. Railway Engineering, 2018, 58(5):1-5.
[108] 朱亚伟.面向大跨度桥梁结构健康监测的超重车动态识别方法研究[D].广州:华南理工大学,2018.ZHU Ya-wei. Study of Dynamic Detection of Overloaded Vehicles for the Long-span Bridge Structural Health Monitoring[D]. Guangzhou:South China University of Technology, 2018.
[109] SANTOS A, FIGUEIREDO E, COSTA J. Clustering Studies for Damage Detection in Bridges:A Comparison Study[J]. Structural Health Monitoring 2015, 2015:1-8.
[110] ALAMDARI M M, RAKOTOARIVELO T, KHOA N L D. A Spectral-based Clustering for Structural Health Monitoring of the Sydney Harbour Bridge[J]. Mechanical Systems and Signal Processing, 2017, 87:384-400.
[111] ZHOU Y L, MAIA N M, SAMPAIO R P, et al. Structural Damage Detection Using Transmissibility Together with Hierarchical Clustering Analysis and Similarity Measure[J]. Structural Health Monitoring, 2017, 16(6):711-731.
[112] 郑沛娟,林迪南,宗周红,等.基于图论聚类的随机子空间模态参数自动识别[J].东南大学学报:自然科学版,2017,47(4):710-716.ZHENG Pei-juan, LIN Di-nan, ZONG Zhou-hong, et al. Automatic Stochastic Subspace Identification of Modal Parameters Based on Graph Clustering[J]. Journal of Southeast University:Natural Science Edition, 2017, 47(4):710-716.
[113] MANYIKA J, CHUI M, BROWN B, et al. Big Data:The Next Frontier for Innovation, Competition, and Productivity[EB/OL]. (2011-05-03)[2018-07-25]. https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation.
[114] 闵志华,孙利民,淡丹辉.影响斜拉桥模态参数变化的环境因素分析[J].振动与冲击,2009,28(10):99-105.MIN Zhi-hua, SUN Li-min, DAN Dan-hui. Effect Analysis of Environmental Factors on Structural Modal Parameters of a Cable-stayed Bridge[J]. Journal of Vibration and Shock, 2009, 28(10):99-105.
[115] DING Y L, WANG G X, HONG Y, et al. Detection and Localization of Degraded Truss Members in a Steel Arch Bridge Based on Correlation Between Strain and Temperature[J]. Journal of Performance of Constructed Facilities, 2017, 31(5):04017082.
[116] 梁吉业,冯晨娇,宋鹏.大数据相关分析综述[J].计算机学报,2016,39(1):1-18.LIANG Ji-ye, FENG Chen-jiao, SONG Peng. A Survey on Correlation Analysis of Big Data[J]. Chinese Journal of Computers, 2016, 39(1):1-18.
[117] PIMENTEL M A, CLIFTON D A, CLIFTON L, et al. A Review of Novelty Detection[J]. Signal Processing, 2014, 99:215-249.
[118] FIGUEIREDO E, CROSS E. Linear Approaches to Modeling Nonlinearities in Long-term Monitoring of Bridges[J]. Journal of Civil Structural Health Monitoring, 2013, 3(3):187-194.
[119] OH C K, SOHN H, BAE I H. Statistical Novelty Detection Within the Yeongjong Suspension Bridge Under Environmental and Operational Variations[J]. Smart Materials and Structures, 2009, 18(12):125022.
[120] YI T H, LI H N, SONG G, et al. Detection of Shifts in Gps Measurements for a Long-span Bridge Using Cusum Chart[J]. International Journal of Structural Stability and Dynamics, 2016, 16(4):1640024.
[121] SHAHIDI S G, NIGRO M B, PAKZAD S N, et al. Structural Damage Detection and Localisation Using Multivariate Regression Models and Two-sample Control Statistics[J]. Structure and Infrastructure Engineering, 2015, 11(10):1277-1293.
[122] CHA Y J, WANG Z. Unsupervised Novelty Detection-based Structural Damage Localization Using a Density Peaks-based Fast Clustering Algorithm[J]. Structural Health Monitoring, 2018, 17(2):313-324.
[123] SILVA M, SANTOS A, FIGUEIREDO E, et al. A Novel Unsupervised Approach Based on a Genetic Algorithm for Structural Damage Detection in Bridges[J]. Engineering Applications of Artificial Intelligence, 2016, 52:168-180.
[124] WEISS K, KHOSHGOFTAAR T M, WANG D D. A Survey of Transfer Learning[J]. Journal of Big Data, 2016, 3(1):1-40.
[125] YOSINSKI J, CLUNE J, BENGIO Y, et al. How Transferable Are Features in Deep Neural Networks[C]//GHAHRAMANI Z, WELLING M, CORTES C, et al. Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014:3320-3328.
[126] MAATEN L, HINTON G. Visualizing Data Using T-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605.
[127] NGUYEN H, ROSEN P. DSPCP:A Data Scalable Approach for Identifying Relationships in Parallel Coordinates[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24:1301-1315.
[128] SHANG Z Q, SUN L M, ZHOU Y. A Big Data Application in SHM:PCP-based Pattern Recognition[C]//SUN L M, HAO J P, CHEN Y Y, et al. Proceedings of the 15th East Asia-pacific Conference on Structural Engineering and Construction (EASEC-15). Shanghai:Tongji University, 2017:1587-1593.
熊文, 覃忠余, 郭建, 刘华, 宋晓东, 叶见曙.
南京长江大桥铁路层车致振动对公路层维修改造的影响分析
[J]. 中国公路学报, 2021, 34(7): 246-257.
侯苏伟, 周泰翔, 龙佩恒.
新型大直径GFRP筋锚具设计及试验研究
[J]. 中国公路学报, 2021, 34(7): 258-269.
方海, 陈志跃, 刘伟庆, 万云磊, 祝露.
节段拼装桥墩撞击试验研究与数值分析
[J]. 中国公路学报, 2021, 34(7): 270-283.
张寒, 王浩, 徐梓栋, 陶天友, 茅建校, 郜辉.
高铁连续梁桥龙卷风荷载数值模拟
[J]. 中国公路学报, 2021, 34(7): 284-290.
李源, 刘建昱, 韩逸涛.
爆炸荷载下钢筋混凝土桥面板损伤机理研究
[J]. 中国公路学报, 2021, 34(7): 291-300.
陈卓异, 李传习, 柯璐, 郭立成, 宋钢兵.
钢桥面板弧形切口疲劳裂纹切割修复与优化
[J]. 中国公路学报, 2021, 34(7): 301-312.
卢春房, 张航, 陈明玉.
新时代背景下的交通运输高质量发展
[J]. 中国公路学报, 2021, 34(6): 1-9.
周旭辉, 韩艳, 颜虎斌, 丁少凌, 王磊.
基于风洞试验的变截面圆灯柱涡激振动与影响因素研究
[J]. 中国公路学报, 2021, 34(6): 48-56.
侯炜, 张岗, 李源, 胡文亮.
考虑防火涂料的PC箱梁时空温度场及刚度退化试验研究
[J]. 中国公路学报, 2021, 34(6): 57-68.
黄福云, 张峰, 单玉麟, 林友炜, 周志明.
整体式桥台-桩基-土相互作用内力计算方法研究
[J]. 中国公路学报, 2021, 34(6): 69-79.
史占崇, 曾明辉, 邱文东, 苏庆田.
正交异性钢-混凝土组合桥面板纵桥向的压弯性能
[J]. 中国公路学报, 2021, 34(6): 80-89.
何余良, 胡立普, 曹鑫雨, 杨赢, 项贻强.
混杂纤维混凝土螺栓剪力键试验
[J]. 中国公路学报, 2021, 34(6): 90-98.
惠记庄, 雷景媛, 王亚飞, 张富强, 丁凯, 张金龙.
公路桥梁钢结构工厂化制造多属性决策评价方法
[J]. 中国公路学报, 2021, 34(6): 99-108.
宗长富, 代昌华, 张东.
智能汽车的人机共驾技术研究现状和发展趋势
[J]. 中国公路学报, 2021, 34(6): 214-237.