To prevent the arrival of the next wave of pandemics, it is essential to develop an Autonomous Mobile Robot (AMR) capable of delivering food or documents. To enhance the robot's versatility, enabling it to autonomously use elevators is crucial. Currently, most robots call elevators directly using wireless communication for inter-floor movement. However, not all elevators support wireless communication. Therefore, this paper investigates methods for indoor autonomous mobile robots to navigate between floors. Previous research has mostly focused on single elevator usage and lacks analysis of scenarios with multiple elevators. This limitation could result in the robot entering the wrong elevator. Hence, this paper provides a detailed analysis of multi-elevator taking strategies. Regarding the detection of panels and buttons, precise recognition is achieved, and the system can accurately track buttons even in situations with obstructed views and while in motion. Concerning the robot's movement, a novel approach called BubbleMPC, which combines Bubble generation and Model Predictive Control (MPC), is designed to achieve obstacle avoidance. BubbleMPC enables precise entry into narrow elevator doors and accurate positioning. Moreover, the elevator control system not only allows the robot to extend its mechanical arm to press buttons while moving but also accurately calculates the elevator door's position and interior space to determine whether the robot should enter. The experimental results demonstrate that our strategy can accurately handle boarding in scenarios with multiple elevators.
摘要 i
ABSTRACT ii
致謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 3
1.3 文獻探討 3
1.4 論文貢獻 5
1.5 論文架構 5
第二章 硬體與系統架構介紹 6
2.1 硬體架構介紹 6
2.1.1 車體底盤設計與控制 7
2.1.2 電控系統 9
2.1.3 手臂平台設計 10
2.1.4 車載電腦 12
2.2 系統架構介紹 13
2.2.1 簡介 13
2.2.2 Robot Operation System 14
2.2.3 座標轉換關係 14
2.3 多電梯系統流程 16
2.3.1 外部按鈕按壓 17
2.3.2 外部等待電梯門開啟 18
2.3.3 內部按鈕按壓 19
2.3.4 內部等待電梯到達 19
第三章 電梯面板與按鈕偵測 21
3.1 面板偵測 21
3.2 按鈕偵測 22
3.3 二維物件與三維座標轉換 24
3.4 按鈕追蹤 29
第四章 車體移動控制 33
4.1 模型預測控制 33
4.2 BubbleMPC 34
4.2.1 成本地圖 34
4.2.2 創建Bubble演算法 36
4.2.3 模型定義 41
4.2.4 代價函數定義 45
第五章 多電梯搭乘策略 50
5.1前言 50
5.2 電梯定位 50
5.3 視覺伺服與手臂控制 53
5.4 電梯狀態與空間偵測 58
5.5 樓層偵測 62
第六章 實驗結果 63
6.1 物件偵測 63
6.1.1 面板偵測 63
6.1.2 按鈕偵測 65
6.1.3 按鈕追蹤 68
6.2 車體移動控制 68
6.2.1 電腦模擬 69
6.2.2 實際移動 71
6.3 多電梯策略評估 74
6.3.1 電梯定位 74
6.3.2 視覺伺服與手臂控制 75
6.3.3 電梯門狀態偵測 78
6.3.4 樓層偵測 79
6.4 整體電梯成效評估 79
第七章 結論和未來展望 83
7.1 結論 83
7.2 未來展望 84
參考文獻 85
[1]"World Robotics 2022" International Federation of Robotics. October. 13, 2022. Available:https://ifr.org/downloads/press2018/2022_WR_extended_version.pdf
[2]M. Labbé and F. Michaud, “RTAB-Map as an Open-Source Lidar and Visual SLAM Library for Large-Scale and Long-Term Online Operation,” J. Field Robot., vol. 36, no. 2, pp. 416–446, Mar. 2019, doi: 10.1002/rob.21831.
[3]R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1147–1163, Oct. 2015, doi: 10.1109/TRO.2015.2463671.
[4]G. Grisetti, C. Stachniss, and W. Burgard, “Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Apr. 2005, pp. 2432–2437. doi: 10.1109/ROBOT.2005.1570477.
[5]S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A Flexible and Scalable SLAM System with Full 3D Motion Estimation,” in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Nov. 2011, pp. 155–160. doi: 10.1109/SSRR.2011.6106777.
[6]P. Biber and W. Strasser, “The Normal Distributions Transform: A New Approach to Laser Scan Matching,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Oct. 2003, vol. 3, pp. 2743–2748 vol.3. doi: 10.1109/IROS.2003.1249285.
[7]W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-Time Loop Closure in 2D LIDAR SLAM,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp. 1271–1278. doi: 10.1109/ICRA.2016.7487258.
[8]S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning and control,” in Proc. IEEE Conf. on Robotics and Automation, vol. 2, Atlanta, GA, May 1993, pp. 802–807.
[9]C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann and T. Bertram, "Trajectory modification considering dynamic constraints of autonomous robots," ROBOTIK 2012; 7th German Conference on Robotics, Munich, Germany, 2012, pp. 1-6.
[10]Z. Zhu, E. Schmerling and M. Pavone, "A convex optimization approach to smooth trajectories for motion planning with car-like robots," 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, 2015, pp. 835-842, doi:10.1109/CDC.2015.7402333.
[11]“A* Search Algorithm,” Wikipedia. Jun. 14, 2022. [Online]. Available: https://en.wikipedia.org/w/index.php?title=A*_search_algorithm&oldid=1093081650
[12]“Dijkstra’s Algorithm,” Wikipedia. Jan. 05, 2022. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm&oldid=1091575521
[13]C. C. Wong, S.-A. Li, and H.-Y. Wang, “Optimal PID controller designfor AVR system,” vol. 12, no. 3, 2009, pp. 259–270
[14]D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance.IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.
[15]T. Faulwasser, B. Kern, and R. Findeisen, “Model Predictive Path-Following for Constrained Nonlinear Systems,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, Dec. 2009, pp. 8642–8647. doi: 10.1109/CDC.2009.5399744.
[16]S. Yu, Y. Guo, L. Meng, T. Qu, and H. Chen, “MPC for Path Following Problems of Wheeled Mobile Robots,” IFAC-Pap., vol. 51, no. 20, pp. 247–252, Jan. 2018, doi: 10.1016/j.ifacol.2018.11.021.
[17]M. Gaertner, M. Bjelonic, F. Farshidian, and M. Hutter, “Collision-Free MPC for Legged Robots in Static and Dynamic Scenes,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), May 2021, pp. 8266–8272. doi: 10.1109/ICRA48506.2021.9561326.
[18]D. Lam, C. Manzie, and M. Good, “Model Predictive Contouring Control,” in 49th IEEE Conference on Decision and Control (CDC), Dec. 2010, pp. 6137–6142. doi: 10.1109/CDC.2010.5717042.
[19]D. Lam, C. Manzie, and M. C. Good, “Model Predictive Contouring Control for Biaxial Systems,” IEEE Trans. Control Syst. Technol., vol. 21, no. 2, pp. 552–559, Mar. 2013, doi: 10.1109/TCST.2012.2186299.
[20]J. Lim, H. Lee and J. Choi, "Nonlinear Model Predictive Control with Cost Function Scheduling for a Wheeled Mobile Robot," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp. 5664-5670, doi: 10.1109/IROS47612.2022.9981066.
[21]B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4459–4466, Oct. 2019, doi: 10.1109/LRA.2019.2929976.
[22]W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus, “Safe Nonlinear Trajectory Generation for Parallel Autonomy With a Dynamic Vehicle Model,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 9, pp. 2994–3008, Sep. 2018, doi: 10.1109/TITS.2017.2771351.
[23]C. Rösmann, A. Makarow, and T. Bertram, “Online Motion Planning based on Nonlinear Model Predictive Control with Non-Euclidean Rotation Groups,” 2021 Eur. Control Conf. ECC, pp. 1583–1590, Jun. 2021, doi: 10.23919/ECC54610.2021.9654872.
[24]R. Simmons et al. "GRACE : An autonomous robot for the AAAI Robot Challenge",AAAI Moble Robot Competition,pp. 1 -14 , 2003.
[25]J.G. Kang, S.Y. An, and S.Y. Oh. "Navigation strategy for the service robot in the elevator environment," 2007 International Conference on Control, Automation and Systems, Seoul, Korea (South), 2007, pp. 1092-1097,doi:10.1109/ICCAS.2007.4407062.
[26]J. Zhao, Y. Chen, and Y. Lou, “A Human-Aware Robotic System for Mobile Robot Navigating in Multi-Floor Building with Elevator,” in 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Aug. 2019, pp. 178–183. doi: 10.1109/WRC-SARA.2019.8931948.
[27]J.-G. Kang, S.-Y. An, W.-S. Choi, and S.-Y. Oh, “Recognition and Path Planning Strategy for Autonomous Navigation in the Elevator Environment,” Int. J. Control Autom. Syst., vol. 8, no. 4, Art. no. 4, Aug. 2010, doi: 10.1007/s12555-010-0413-3.
[28]A. A. Abdulla, H. Liu, N. Stoll, and K. Thurow, “An Automated Elevator Management and Multi-Floor Estimation for Indoor Mobile Robot Transportation Based on a Pressure Sensor,” in 2016 17th International Conference on Mechatronics - Mechatronika (ME), Dec. 2016, pp. 1–7.
[29]B. Şimşek and O. N. Güneş, “Indoor Floor Change Detection Using Barometer,” in 2019 27th Signal Processing and Communications Applications Conference (SIU), Apr. 2019, pp. 1–4. doi: 10.1109/SIU.2019.8806365.
[30]A. A. Abdulla, H. Liu, N. Stoll, and K. Thurow, “A Robust Method for Elevator Operation in Semi-Outdoor Environment for Mobile Robot Transportation System in Life Science Laboratories,” in 2016 IEEE 20th Jubilee International Conference on Intelligent Engineering Systems (INES), Jun. 2016, pp. 45–50. doi: 10.1109/INES.2016.7555147.
[31]P.-Y. Yang, T.-H. Chang, Y.-H. Chang, and B.-F. Wu, “Intelligent Mobile Robot Controller Design for Hotel Room Service with Deep Learning Arm-Based Elevator Manipulator,” in 2018 International Conference on System Science and Engineering (ICSSE), Jun. 2018, pp. 1–6. doi: 10.1109/ICSSE.2018.8520030
[32]D. Zhu, T. Li, D. Ho, T. Zhou and M. Q. -H. Meng, "A Novel OCR-RCNN for Elevator Button Recognition," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 3626-3631, doi:10.1109/IROS.2018.8594071.
[33]J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,2015.
[34]A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft, "Simple online and realtime tracking," 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 2016, pp. 3464-3468, doi: 10.1109/ICIP.2016.7533003.
[35]A. Goshtasby, S. H. Gage and J. F. Bartholic, "A Two-Stage Cross Correlation Approach to Template Matching," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 3, pp. 374-378, May 1984, doi: 10.1109/TPAMI.1984.4767532.
[36]S. Jiang et al., “Automatic Elevator Button Localization Using a Combined Detecting and Tracking Framework for Multi-Story Navigation,” IEEE Access, vol. 8, pp. 1118–1134, 2020, doi: 10.1109/ACCESS.2019.2958092.
[37]E. Klingbeil, B. Carpenter, O. Russakovsky, and A. Y. Ng, “Autonomous Operation of Novel Elevators for Robot Navigation,” in 2010 IEEE International Conference on Robotics and Automation, May 2010, pp. 751–758. doi: 10.1109/ROBOT.2010.5509466.
[38]W. -J. Wang, C. -H. Huang, I. -H. Lai and H. -C. Chen, "A robot arm for pushing elevator buttons," Proceedings of SICE Annual Conference 2010, Taipei, Taiwan, 2010, pp. 1844-1848
[39]Z. Dong, D. Zhu and M. Q. . -H. Meng, "An autonomous elevator button recognition system based on convolutional neural networks," 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 2017, pp. 2533-2539, doi: 10.1109/ROBIO.2017.8324801.
[40]J.G. Juang, C.L. Yu, C.M. Lin, R.G. Yeh and I.J. Rudas, “Real-Time Image Recognition and Path Tracking toWheeled Mobile Robot for Taking an Elevator.” Acta Polytech. Hung. 2013, 10, 5–23.
[41]F. Kallasi, D. L. Rizzini, and S. Caselli, “Fast Keypoint Features From Laser Scanner for Robot Localization and Mapping,” IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 176–183, Jan. 2016, doi: 10.1109/LRA.2016.2517210.
[42]P. Nunez, R. Vazquez-Martin, J. C. del Toro, A. Bandera, and F. Sandoval, “Feature Extraction from Laser Scan Data Based on Curvature Estimation for Mobile Robotics,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., May 2006, pp. 1167–1172. doi: 10.1109/ROBOT.2006.1641867.
[43]D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study,” arXiv, arXiv:1404.3785, Apr. 2014. doi: 10.48550/arXiv.1404.3785.
[44]Diankov, Rosen (2018). Automated Construction of Robotic Manipulation Programs. Carnegie Mellon University. Thesis. https://doi.org/10.1184/R1/6714905.v1
[45]"ROS: Home. " https://www.ros.org/ (accessed June 26, 2023).
[46]"Support vector machine" Wikipedia. Jul. 5, 2023. [Online]. Available: https://en.wikipedia.org/wiki/Support_vector_machine
[47]T. Foote, "tf: The transform library," 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 2013, pp. 1-6, doi: 10.1109/TePRA.2013.6556373.
[48]Verschueren, R., Frison, G., Kouzoupis, D. et al. “acados—a modular open-source framework for fast embedded optimal control.” Math. Prog. Comp. 14, 147–183 (2022). https://doi.org/10.1007/s12532-021-00208-8
[49]J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: A Software Framework for Nonlinear Optimization and Optimal Control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36, Mar. 2019, doi: 10.1007/s12532-018-1160139-4.
[50]G. Frison and M. Diehl, "HPIPM: a high-performance quadratic programming framework for model predictive control", Proceedings of the IFAC World Congress, July 2020.
[51]E. Marchand, F. Spindler, and F. Chaumette, “ViSP for Visual Servoing: A Generic Software Platform with a Wide Class of Robot Control Skills,” IEEE Robot. Autom. Mag., vol. 12, no. 4, pp. 40–52, Dec. 2005, doi: 10.1109/MRA.2005.1577023.
[52]黃俞達 and 姚立德, 室內型無人載具之研製=Design and Implementation of Indoor Autonomous Vehicle. [電子資源]. 黃俞達, 2022.