Based on Reissner’s mixed variational theorem (RMVT), the authors develop a finite annular prism method (FAPM) for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to either uniformly or trigonometrically distributed loads. In this formulation, the toroidal shell is divided into a number of finite annular prisms with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridian-radial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAPMs shows that their solutions converge rapidly, and the convergent FAPM solutions closely agree with the 3D elasticity solutions available in the literature.
摘要 I
Extended Abstract II
誌謝 VI
目錄 VII
表目錄 VIII
圖目錄 IX
符號對照表 Ⅹ
第一章 緒論 1
第二章 材料係數 6
2.1. 單層均質同心圓環殼 6
2.2. 正交性疊層同心圓環殼 6
2.3. 雙向FG材料同心圓環殼 6
2.3.1. 混合法則(the rule of mixtures) 7
2.3.2 Mori-Tanaka微觀力學法則 8
第三章 理論推衍 9
3.1. 同心圓環殼的幾何座標 9
3.2. 橫向應力與位移變量之假設 10
3.3. Reissner混合變分理論 12
3.4. Euler-Lagrange方程式以及邊界條件 14
第四章 數值範例 19
4.1. 無限長,均質均向性材料封閉式同心圓環殼 19
4.2. 正交性材料同心圓環層殼 20
4.3. 單向及雙向FG材料同心圓環殼 21
第五章 結論 26
參考文獻 27
附錄A. 工程常數與彈性係數間關係式 48
參考文獻
Asratyan, M.G. and Gevorgyan, R.S. (2010), “Mixed boundary-value problems of thermoelasticity for anisotropic-in-plane inhomogeneous toroidal shells, J. Appl. Math. Mech., 74(3), 306-312. DOI:10.1016/j.jappmathmech.2010.07.006.
Bert, C.W. and Malik, M. (1996), “Differential quadrature method in computational mechanics: a review, Appl. Mech. Rev., 49(1), 1-27. DOI:10.1115/1.3101882.
Bich, D.H., Ninh, D.G., Kien, B.H. and Hui, D. (2016), “Nonlinear dynamical analyses of eccentrically stiffened functionally graded toroidal shell segments surrounded by elastic foundation in thermal environment, Compos. Part B, 95, 355-373. DOI:10.1016/j.compositesb.2016.04.004.
Bich, D.H., Ninh, D.G. and Thinh, T.I., “Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects, Compos. Part B, 87, 75-91. DOI:10.1016/j.compositesb.2015.10.021.
Bucalem, M.L. and Bathe, K.J. (1997), “Finite element analysis of shell structures, Arch. Comput. Meth. Engng., 4, 3-61. DOI:10.1007/BF02818930.
Buchanan, G.R. and Liu, Y.J. (2005), “An analysis of the free vibration of thick-walled isotropic toroidal shells, Int. J. Mech. Sci., 47(2), 277-292. DOI:10.1016/j.ijmecsci.2004.12.004.
Budiansky, B. (1968), “Notes on nonlinear shell theory, J. Appl. Mech., 35(2), 393-401. DOI:10.1115/1.3601208.
Bujurke, N.M., Salimath, C.S. and Shiralashetti, S.C. (2008), “Computation of eigenvalues and solutions of regular Sturm-Liouville problems using Haar wavelets, J. Comput. Appl. Math., 219(1), 90-101. DOI:10.1016/j.cam.2007.07.005.
Carrera, E. (2003), “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, Arch. Comput. Meth. Engng., 10, 215-296. DOI:10.1007/BF02736224.
Carrera, E., Pagani, A. and Valvano, S. (2017), “Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures, Compos. Part B, 111, 294-314. DOI:10.1016/j.compositesb.2016.12.001.
Carrera, E. (2002), “Theories and finite elements for multilayered, anisotropic, composite plates and shells, Arch. Comput. Meth. Engng., 9, 87-140. DOI:10.1007/BF02736649.
Carrera, E. (2003), “Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev., 56(3), 287-308. DOI:10.1115/1.1557614.
Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Duc, N.D. (2019), “Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load, Steel Compos. Struct., 31(3), 243-259. DOI:10.12989/scs.2019.31.0.000.
Chun, C.K. and Dong, S.B. (1998), “Finite element analysis of shear deformation in laminated anisotropic shells of revolution, J. Sound Vib., 218(1), 164-176. DOI:10.1006/jsvi.1998.1814.
Donnell, LH. (1976), Beams, Plates, and Shells, McGraw-Hill, New York.
Du, H., Lim, M.K. and Lin, R.M. (1994), “Application of generalized differential quadrature method to structural problems, Int. J. Numer. Methods Eng., 37, 1881-1896. DOI:10.1002/nme.- 1620371107.
, W. (1973), Stresses in Shells, Springer-Verlag, New York.
Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), “Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials, Struct. Eng. Mech., 43(1), 105-126. DOI:10.12989/sem.2012.43.1.105.
Gould, P.L. (1999), Analysis of Plates and Shells, Prentice Hall, New York.
Jha, D.K., Kant, T. and Singh, R.K. (2013), “A critical review of recent research on functionally graded plates, Compos. Struct., 96, 833-849. http://dx.doi.org/10.1016/j.compstruct.2012.09.001.
Jiang, W. and Redekop, D. (2002), “Analysis of transversely isotropic hollow toroids using the semi-analytical DQM, Struct. Eng. Mech., 13(1), 103-116. DOI:10.12989/sem.2002.13.1.103.
Jiang, W. and Redekop, D. (2003), “Static and vibration analysis of orthotropic toroidal shells of variable thickness by differential quadrature, Thin-Walled Struct., 41(5), 461-478. DOI:10.1016/S0263-8231(02)00116-7.
Jin, G., Ye, T., Wang, X. and Miao, X. (2016), “A unified solution for the vibration analysis of FGM doubly-curved shells of revolution with arbitrary boundary conditions, Compos. Part B, 89, 230-252. DOI:10.1016/j.compositesb.2015.11.015.
Jones, R.M. (1975), Mechanics of Composite Materials, Scripta Book Company, New York.
Kant, T., Jha, D.K. and Singh, R.K. (2014), “A higher-order shear and normal deformation functionally graded plate model: some recent results, Acta Mech. 225, 2865-2876. DOI:10.1007/s00707-014-1213-2.
Khayat, M., Poorveis, D. and Moradi, S. (2017), “Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure, Steel Compos. Struct., 23(1), 1-16. DOI:10.12989/scs.2017.23.1.001.
Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), “Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method, Steel Compos. Struct., 28(6), 735-748. DOI:10.12989/scs.2018.28.6.735.
Kraus, H. (1967), Thin Elastic Shells. John Wiley & Sons, New York.
Mori, T. and Tanaka, K. (1973), “Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571-574.
Murakami, H. (1986), “Laminated composite plate theory with improved in-plane response, J. Appl. Mech., 53(3), 661–666. DOI:10.1115/1.3171828.
Noor, A.K. and Burton, W.S. (1990), “Assessment of computational models for multilayered composite shells, Appl. Mech. Rev., 43(4), 67-97. DOI:10.1115/1.3119162.
Noor, A.K., Burton, W.S. and Peters, J.M. (1991), “Assessment of computational models for multilayered composite cylinders, Int. J. Solids Struct., 27(10), 1269-1286. DOI:10.1016/0020-7683(91)90162-9.
Noor, A.K. and Peters, J.M. (1987), “Vibration analysis of laminated anisotropic shells of revolution, Comput. Methods Appl. Mech. Engrg., 61(3), 277-301. DOI:10.1016/0045-7825(87)90096-X.
Noor, A.K. and Peters, J.M. (1988), “Stress and vibration analyses of anisotropic shells of revolution, Int. J. Numer. Methods Eng., 26(5), 1145-1167. DOI:10.1002/nme.1620260510.
Noor, A.K. and Peters, J.M. (1987), “Analysis of laminated anisotropic shells of revolution, J. Eng. Mech., 113(1), 49-65. DOI:10.1061/(ASCE)0733-9399(1987)113:1(49).
Novozhilov, V.V. (1951), Theory of Elastic Shells, State Press of Naval Arch, New York.
Panagiotopoulos, G.D. (1985), “Stress and stability analysis of toroidal shells, Int. J. Press. Vess. Piping, 20(2), 87-100. DOI:10.1016/0308-0161(85)90070-5.
Qu, Y., Long, X., Yuan, G. and Meng, G. (2013), “A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions, Compos. Part B, 50, 381-402. DOI:10.1016/j.compositesb.2013.02.028
Ramirez, F, Heyliger, P.R. and Pan, E. (2006), “Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach, Compos. Part B, 37, 10-20. DOI:10.1016/j.compositesb.2005.05.009.
Redekop, D. (1992), “A displacement solution in toroidal elasticity, Int. J. Press. Vess. Piping, 51(2), 189-209. DOI:10.1016/0308-0161(92)90080-Y.
Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells. CRC Press, New York.
Reissner, E. (1984), “On a certain mixed variational theorem and a proposed application, Int. J. Numer. Methods Eng., 20(7), 1366-1368. DOI:10.1002/nme.1620200714.
Reissner, E. (1986), “On a mixed variational theorem and on shear deformable plate theory, Int. J. Numer. Methods Eng., 23(2), 193-198. DOI:10.1002/nme.1620230203.
Sadd, M.H. (2005), Elasticity: Theory, Applications, and Numerics, Elsevier, New York.
Sanders, Jr. J.L. (1959), “An improved first-approximation theory for thin shells, Langley Research Center TRR-24.
Shen, H.S. (2009), Functionally Graded Materials- Nonlinear Analysis of Plates and Shells, CRC Press, New York.
Sobhy, M. and Zenkour, A.M. (2019), “Vibration analysis of functionally graded platelet-reinforced composite doubly-curved shallow shells on elastic foundations, Steel Compos. Struct., 33(2), 195-208. DOI:10.12989/scs.2019.33.2.195.
Soedel, W. (1993), Vibrations of Shells and Plates, Marcel Dekker Inc., New York.
Tarn, J.Q. and Xu, R. (2019), A Course in Theory of Elasticity, Zhejiang University Press, China.
Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, New York.
Tornabene, F. (2009), “Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution, Comput. Methods Appl. Mech. Engrg., 198(37-40), 2911-2935. DOI:10.1016/j.cma.2009.04.011.
Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), “Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories, Compos. Part B, 67, 490-509. DOI:10.1016/j.compositesb.2014.08.012.
Tornabene, F. and Viola, E. (2009), “Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution, Eur. J. Mech. A/Solids, 28(5), 991-1013. DOI:10.1016/j.euromechsol.2009.04.005.
Viola, E. and Tornabene, F. (2009), “Free vibration of three-parameter functionally graded parabolic panels of revolution, Mech. Res. Commun., 36(5), 587-594. DOI:10.1016/j.mechrescom.2009.02.001.
Wang, X.H. and Redekop, D. (2005), “Natural frequencies and mode shapes of an orthotropic thin shell of revolution, Thin-Walled Struct., 43(5), 735-750. DOI:10.1016/j.tws.2004.12.001.
Wang, X.H. and Redekop, D. (2011), “Free vibration analysis of moderately-thick and thick toroidal shells, Struct. Eng. Mech., 39(4), 449-463. DOI:10.12989/sem.2011.39.4.449.
Wu, C.P., Chiu, K.H. and Wang, Y.M. (2008), “A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC-Comput Mater Continua 8(2), 93-132. DOI:10.3970/cmc.2008.008.093.
Wu, C.P. and Ding, S. (2017), “Thermal buckling of FGEM plates integrated with surface-bonded piezoelectric layers and temperature-dependent material properties, J. Therm. Stresses, 40(4), 420-447. DOI:10.1080/01495739.2016.1256009.
Wu, C.P. and Huang, H.Y. (2020), “A semi-analytical finite element method for stress and deformation analyses of bi-directional functionally graded truncated conical shells, Mech. Des. Struct. Mach., Accepted. DOI:10.1080/15397734.2019.1636657.
Wu, C.P. and Jiang, R.Y. (2012), “A state space differential reproducing kernel method for the 3D analysis of FGM sandwich circular hollow cylinders with combinations of simply-supported and clamped edges, Compos. Struct., 94(11), 3401-3420. DOI:10.1016/j.compstruct.2012.05.005.
Wu, C.P. and Jiang, R.Y. (2015), “An asymptotic meshless method for sandwich functionally graded circular hollow cylinders with various boundary conditions, J. Sandw. Struct. Mater., 17(5), 469-510. DOI:10.1177/1099636215577354.
Wu, C.P. and Lee, C.Y. (2001), “Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness, Int. J. Mech. Sci., 43(8), 1853-1870. DOI:10.1016/S0020-7403(01)00010-8.
Wu, C.P. and Liu, Y.C. (2016), “A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells, Compos. Struct., 147(1), 1-15. DOI:10.1016/j.compstruct.2016.03.031.
Wu, C.P. and Yu, L.T. (2018), “Quasi-3D static analysis of two-directional functionally graded circular plates, Steel Compos. Struct., 27(6), 789-801. DOI:10.12989/scs.2018.27.6.789.
Wu, C.P. and Yu, L.T. (2019), “Free vibration analysis of bi-directional functionally graded annular plates using finite annular prism methods, J. Mech. Sci. Technol., 33, 2267-2279. DOI:10.1007/s12206-019-0428-5.
Xie, X., Zheng, H. and Jin, G. (2015), “Free vibration of four-parameter functionally graded spherical and parabolic shells of revolution with arbitrary boundary conditions, Compos. Part B, 77, 59-73. DOI:10.1016/j.compositesb.2015.03.016.
Zhang, R.J. (1994), “Toroidal shells under nonsymmetric loading, Int. J. Solids Struct., 31(19), 2735-2750. DOI:10.1016/0020-7683(94)90227-5.
Zhang, Y.M., Mirfakhraei, P., Xu, B. and Redekop, D. (1998), “A computer program for the elastostatics of a toroidal shell using the differential quadrature method, Int. J. Press. Vess. Piping, 75 (13), 919-929. DOI:10.1016/S0308-0161(98)00092-1.
Zhang, F. and Redekop, D. (1992), “Surface loading of a thin-walled toroidal shell, Comput. Struct., 43(6), 1019-1028. DOI:10.1016/0045-7949(92)90002-H.