The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023 Jun 25; 52(3): 267–278.
PMCID: PMC10409897

Language: Chinese | English

生物材料增效NK细胞免疫疗法研究进展

Research progress in leveraging biomaterials for enhancing NK cell immunotherapy

汤 迎琦

中国药科大学药学院药剂系 天然药物活性组分与药效国家重点实验室, ,江苏 210009

Find articles by 汤 迎琦

钱 程根

中国药科大学药学院药剂系 天然药物活性组分与药效国家重点实验室, ,江苏 Current progress of CAR-NK therapy in cancer treatment [J]. Cancers (Basel) , 2022, 14 ( 17 ): 4318. 10.3390/cancers14174318 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

2. 国家药品监督管理局药品审评中心 . 靶向间皮素嵌合抗原受体NK细胞注射液[EB/OL]. (2021-11-11) [2022-12-01]. https://www.cde.org.cn/main/xxgk/listpage/4b5255eb0a84820cef4ca3e8b6bbe20c . Center for Drug Evaluation of National Medical Products Administration . Mesothelin CAR-NK injection[EB/OL]. (2021-11-11) [2022-12-01]. https://www.cde.org.cn/main/xxgk/listpage/4b5255eb0a84820cef4ca3e8b6bbe20c. (in Chinese)
3. BAGHERY SAGHCHY KHORASANI A, YOUSEFI A M, BASHASH D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges [J]. Int Immunopharmacol , 2022, 110 : 109041. 10.1016/j.intimp.2022.109041 [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. VAN COILLIE J, SCHULZ M A, BENTLAGE A, et al.. Role of N -Glycosylation in FcγRⅢa interaction with IgG [J]. Front Immunol , 2022, 13 : 987151. 10.3389/fimmu.2022.987151 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. KOVALENKO E I, ABAKUSHINA E, TELFORD W, et al.. Clustered carbohydrates as a target for natural killer cells: a model system [J]. Histochem Cell Biol , 2007, 127 ( 3 ): 313-326. 10.1007/s00418-006-0240-z [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. RABUKA D, FORSTNER M B, GROVES J T, et al.. Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes [J]. J Am Chem Soc , 2008, 130 ( 18 ): 5947-5953. 10.1021/ja710644g [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. LEE D Y, LIM K S, VALENCIA G M, et al.. One-step method for instant generation of advanced allogeneic NK cells [J]. Adv Sci (Weinh) , 2018, 5 ( 11 ): 1800447. 10.1002/advs.201800447 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. ZHOU J, ROSSI J. Aptamers as targeted therapeutics: current potential and challenges [J]. Nat Rev Drug Discov , 2017, 16 ( 3 ): 181-202. 10.1038/nrd.2016.199 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. YANG S, WEN J, LI H, et al.. Aptamer-engineered natural killer cells for cell-specific adaptive immuno-therapy [J/OL]. Small , 2019, 15 ( 22 ): e1900903. 10.1002/smll.201900903 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. TERAMURA Y, EKDAHL K N, FROMELL K, et al.. Potential of cell surface engineering with biocompatible polymers for biomedical applications [J]. Langmuir , 2020, 36 ( 41 ): 12088-12106. 10.1021/acs.langmuir.0c01678 [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. KIM S, KIM K. Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities [J]. Biomater Adv , 2022, 140 : 213059. 10.1016/j.bioadv.2022.213059 [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. ZHAO S, DUAN J, LOU Y, et al.. Surface specifically modified NK-92 cells with CD56 antibody conjugated superparamagnetic Fe 3 O 4 nanoparticles for magnetic targeting immunotherapy of solid tumors [J]. Nanoscale , 2021, 13 ( 45 ): 19109-19122. 10.1039/d1nr03329h [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. MENG D, PAN H, HE W, et al.. In Situ activated NK cell as bio-orthogonal targeted live-cell nanocarrier augmented solid tumor immunotherapy [J]. Adv Funct Mater , 2022, 32 ( 29 ): 2202603. 10.1002/adfm.202202603 [ CrossRef ] [ Google Scholar ]
14. LOFTUS C, SAEED M, DAVIS D M, et al.. Activation of human natural killer cells by graphene oxide-templated antibody nanoclusters [J]. Nano Lett , 2018, 18 ( 5 ): 3282-3289. 10.1021/acs.nanolett.8b01089 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. IM S, JANG D, SARAVANAKUMAR G, et al.. Harnessing the formation of natural killer-tumor cell immunological synapses for enhanced therapeutic effect in solid tumors [J/OL]. Adv Mater , 2020, 32 ( 22 ): e2000020. 10.1002/adma.202070167 [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. SIEGLER E L, KIM Y J, CHEN X, et al.. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers [J]. Mol Ther , 2017, 25 ( 12 ): 2607-2619. 10.1016/j.ymthe.2017.08.010 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. LI H K, HSIAO C W, YANG S H, et al.. A novel off-the-shelf trastuzumab-armed NK cell therapy (ACE1702) using antibody-cell-conjugation technology [J]. Cancers (Basel) , 2021, 13 ( 11 ): 2724. 10.3390/cancers13112724 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. TANG L, ZHENG Y, MELO M B, et al.. Enhancing T cell therapy through TCR-signaling-responsive nano-particle drug delivery [J]. Nat Biotechnol , 2018, 36 ( 8 ): 707-716. 10.1038/nbt.4181 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. KOLB H C, FINN M G, SHARPLESS K B. Click chemistry: diverse chemical function from a few good reactions [J]. Angew Chem Int Ed Engl , 2001, 40 ( 11 ): 2004-2021. [ PubMed ] [ Google Scholar ]
20. ZHANG D, ZHENG Y, LIN Z, et al.. Artificial engineered natural killer cells combined with antiheat endurance as a powerful strategy for enhancing photothermal-immunotherapy efficiency of solid tumors [J/OL]. Small , 2019, 15 ( 42 ): e1902636. 10.1002/smll.201970228 [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. WANG X, LUO X, TIAN Y, et al.. Equipping natural killer cells with cetuximab through metabolic glycoen-gineering and bioorthogonal reaction for targeted treatment of KRAS mutant colorectal cancer [J]. ACS Chem Biol , 2021, 16 ( 4 ): 724-730. 10.1021/acschembio.1c00022 [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. GONG L, LI Y, CUI K, et al.. Nanobody-engineered natural killer cell conjugates for solid tumor adoptive immunotherapy [J/OL]. Small , 2021, 17 ( 45 ): e2103463. 10.1002/smll.202170234 [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. SCHMIED L, HÖGLUND P, MEINKE S. Platelet-mediated protection of cancer cells from immune surveillance-possible implications for cancer immuno-therapy [J]. Front Immunol , 2021, 12 : 640578. 10.3389/fimmu.2021.640578 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. HU Q, SUN W, WANG J, et al.. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy [J]. Nat Biomed Eng , 2018, 2 ( 11 ): 831-840. 10.1038/s41551-018-0310-2 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. CHOI S H, KIM H J, PARK J D, et al.. Chemical priming of natural killer cells with branched polyethylenimine for cancer immunotherapy [J/OL]. J Immunother Cancer , 2022, 10 ( 8 ): e004964. 10.1136/jitc-2022-004964 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. KIM K S, HAN J H, CHOI S H, et al.. Cationic nanoparticle-mediated activation of natural killer cells for effective cancer immunotherapy [J]. ACS Appl Mater Interfaces , 2020, 12 ( 51 ): 56731-56740. 10.1021/acsami.0c16357 [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. SIM T, CHOI B, KWON S W, et al.. Magneto-activation and magnetic resonance imaging of natural killer cells labeled with magnetic nanocomplexes for the treatment of solid tumors [J]. ACS Nano , 2021, 15 ( 8 ): 12780-12793. 10.1021/acsnano.1c01889 [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. NAKAMURA T, NAKADE T, YAMADA K, et al.. The hydrophobic tail of a pH-sensitive cationic lipid influences siRNA transfection activity and toxicity in human NK cell lines [J]. Int J Pharm , 2021, 609 : 121140. 10.1016/j.ijpharm.2021.121140 [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. HAN B, SONG Y, PARK J, et al.. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells [J]. J Control Release , 2022, 343 : 379-391. 10.1016/j.jconrel.2022.01.049 [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. GUO J, TARDY B L, CHRISTOFFERSON A J, et al.. Modular assembly of superstructures from polyphenol-functionalized building blocks [J]. Nat Nanotechnol , 2016, 11 ( 12 ): 1105-1111. 10.1038/nnano.2016.172 [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. ZHAO Z, PAN D C, QI Q M, et al.. Engineering of living cells with polyphenol-functionalized biologically active nanocomplexes [J/OL]. Adv Mater , 2020, 32 ( 49 ): e2003492. 10.1002/adma.202003492 [ PubMed ] [ CrossRef ] [ Google Scholar ]
32. PAOLINO M, CHOIDAS A, WALLNER S, et al.. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells [J]. Nature , 2014, 507 ( 7493 ): 508-512. 10.1038/nature12998 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. JANG E S, SHIN J H, REN G, et al.. The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles [J]. Biomaterials , 2012, 33 ( 22 ): 5584-5592. 10.1016/j.biomaterials.2012.04.041 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. WU L, ZHANG F, WEI Z, et al.. Magnetic delivery of Fe 3 O 4 @polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment [J]. Biomater Sci , 2018, 6 ( 10 ): 2714-2725. 10.1039/c8bm00588e [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. PARK H S, KIM J, CHO M Y, et al.. Effectual labeling of natural killer cells with upconverting nanoparticles by electroporation for in vivo tracking and biodistribution assessment [J]. ACS Appl Mater Interfaces , 2020, 12 ( 44 ): 49362-49370. 10.1021/acsami.0c12849 [ PubMed ] [ CrossRef ] [ Google Scholar ]
36. LIU B, CAO W, CHENG J, et al.. Human natural killer cells for targeting delivery of gold nanostars and bimodal imaging directed photothermal/photodynamic therapy and immunotherapy [J]. Cancer Biol Med , 2019, 16 ( 4 ): 756-770. 10.20892/j.issn.2095-3941.2019.0112 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
37. ISHWAR D, HALDAVNEKAR R, VENKATAKRIS-HNAN K, et al.. Minimally invasive detection of cancer using metabolic changes in tumor-associated natural killer cells with oncoimmune probes [J]. Nat Commun , 2022, 13 ( 1 ): 4527. 10.1038/s41467-022-32308-x [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
38. LIAO N, SU L, ZHENG Y, et al.. In vivo tracking of cell viability for adoptive natural killer cell-based immunotherapy by ratiometric NIR-Ⅱ fluorescence imaging [J]. Angew Chem Int Ed Engl , 2021, 60 ( 38 ): 20888-20896. 10.1002/anie.202106730 [ PubMed ] [ CrossRef ] [ Google Scholar ]
39. WU F, XIE M, HUN M, et al.. Natural killer cell-derived extracellular vesicles: novel players in cancer immunotherapy [J]. Front Immunol , 2021, 12 : 658698. 10.3389/fimmu.2021.658698 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. WANG G, HU W, CHEN H, et al.. Cocktail strategy based on NK cell-derived exosomes and their biomimetic nanoparticles for dual tumor therapy [J]. Cancers (Basel) , 2019, 11 ( 10 ): 1560. 10.3390/cancers11101560 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
41. ZHANG M, SHAO W, YANG T, et al.. Conscription of immune cells by light-activatable silencing NK-derived exosome (LASNEO) for synergetic tumor eradication [J/OL]. Adv Sci (Weinh) , 2022, 9 ( 22 ): e2201135. 10.1002/advs.202201135 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
42. FEDERICI C, SHAHAJ E, CECCHETTI S, et al.. Natural-killer-derived extracellular vesicles: immune sensors and interactors [J]. Front Immunol , 2020, 11 : 262. 10.3389/fimmu.2020.00262 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. DENG G, SUN Z, LI S, et al.. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth [J]. ACS Nano , 2018, 12 ( 12 ): 12096-12108. 10.1021/acsnano.8b05292 [ PubMed ] [ CrossRef ] [ Google Scholar ]
44. PITCHAIMANI A, NGUYEN T, ARYAL S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy [J]. Biomaterials , 2018, 160 : 124-137. 10.1016/j.biomaterials.2018.01.018 [ PubMed ] [ CrossRef ] [ Google Scholar ]
45. DENG G, PENG X, SUN Z, et al.. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-Ⅱ fluorescence-guided glioma theranostics [J]. ACS Nano , 2020, 14 ( 9 ): 11452-11462. 10.1021/acsnano.0c03824 [ PubMed ] [ CrossRef ] [ Google Scholar ]
46. JIANG Y, JIANG H, WANG K, et al.. Hypoxia enhances the production and antitumor effect of exosomes derived from natural killer cells [J]. Ann Transl Med , 2021, 9 ( 6 ): 473. 10.21037/atm-21-347 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. AARSUND M, SEGERS F M, WU Y, et al.. Comparison of characteristics and tumor targeting properties of extracellular vesicles derived from primary NK cells or NK-cell lines stimulated with IL-15 or IL-12/15/18 [J]. Cancer Immunol Immunother , 2022, 71 ( 9 ): 2227-2238. 10.1007/s00262-022-03161-0 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
48. NAVIN I, LAM M T, PARIHAR R. Design and implementation of NK cell-based immunotherapy to overcome the solid tumor microenvironment [J]. Cancers (Basel) , 2020, 12 ( 12 ): 3871. 10.3390/cancers12123871 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
49. RAN G H, LIN Y Q, TIAN L, et al.. Natural killer cell homing and trafficking in tissues and tumors: from biology to application [J]. Signal Transduct Target Ther , 2022, 7 ( 1 ): 205. 10.1038/s41392-022-01058-z [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
50. ATUKORALE P U, RAGHUNATHAN S P, RAGUVEER V, et al.. Nanoparticle encapsulation of synergistic immune agonists enables systemic codelivery to tumor sites and IFNβ-driven antitumor immunity [J]. Cancer Res , 2019, 79 ( 20 ): 5394-5406. 10.1158/0008-5472.can-19-0381 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
51. ZHAN M, QIU J, FAN Y, et al.. Phosphorous dendron micelles as a nanomedicine platform for cooperative tumor chemoimmunotherapy via synergistic modulation of immune cells [J/OL]. Adv Mater , 2023, 35 ( 3 ): e2208277. 10.1002/adma.202208277 [ PubMed ] [ CrossRef ] [ Google Scholar ]
52. CHANDRASEKARAN S, CHAN M F, LI J, et al.. Super natural killer cells that target metastases in the tumor draining lymph nodes [J]. Biomaterials , 2016, 77 : 66-76. 10.1016/j.biomaterials.2015.11.001 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
53. ZHOU Z, ZHANG B, ZAI W, et al.. Perfluorocarbon nanoparticle-mediated platelet inhibition promotes intratumoral infiltration of T cells and boosts immuno-therapy [J]. Proc Natl Acad Sci U S A , 2019, 116 ( 24 ): 11972-11977. 10.1073/pnas.1901987116 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
54. WANG Y, XIE H, WU Y, et al.. Bioinspired lipoproteins of furoxans-oxaliplatin remodel physical barriers in tumor to potentiate T-cell infiltration [J/OL]. Adv Mater , 2022, 34 ( 14 ): e2110614. 10.1002/adma.202110614 [ PubMed ] [ CrossRef ] [ Google Scholar ]
55. RUSSICK J, TORSET C, HEMERY E, et al.. NK cells in the tumor microenvironment: prognostic and thera-nostic impact. Recent advances and trends [J]. Semin Immunol , 2020, 48 : 101407. 10.1016/j.smim.2020.101407 [ PubMed ] [ CrossRef ] [ Google Scholar ]
56. JIANG D, GAO T, LIANG S, et al.. Lymph node delivery strategy enables the activation of cytotoxic T lymphocytes and natural killer cells to augment cancer immunotherapy [J]. ACS Appl Mater Interfaces , 2021, 13 ( 19 ): 22213-22224. 10.1021/acsami.1c03709 [ PubMed ] [ CrossRef ] [ Google Scholar ]
57. BIBER G, SABAG B, RAIFF A, et al.. Modulation of intrinsic inhibitory checkpoints using nano-carriers to unleash NK cell activity [J/OL]. EMBO Mol Med , 2022, 14 ( 1 ): e14073. 10.15252/emmm.202114073 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
58. LI J H, O’SULLIVAN T E. Back to the future: spatiotemporal determinants of NK cell antitumor function [J]. Front Immunol , 2021, 12 : 816658. 10.3389/fimmu.2021.816658 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
59. KIM H, KHANNA V, KUCABA T A, et al.. TLR7/8 agonist-loaded nanoparticles augment NK cell-mediated antibody-based cancer immunotherapy [J]. Mol Pharm , 2020, 17 ( 6 ): 2109-2124. 10.1021/acs.molpharmaceut.0c00271 [ PubMed ] [ CrossRef ] [ Google Scholar ]
60. BÖTTCHER J P, BONAVITA E, CHAKRAVARTY P, et al.. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control [J]. Cell , 2018, 172 ( 5 ): 1022-1037.e14. 10.1016/j.cell.2018.01.004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
61. DENG J, XU W, LEI S, et al.. Activated natural killer cells-dependent dendritic cells recruitment and matu-ration by responsive nanogels for targeting pancreatic cancer immunotherapy [J/OL]. Small , 2022, 18 ( 44 ): e2203114. 10.1002/smll.202203114 [ PubMed ] [ CrossRef ] [ Google Scholar ]
62. ZHENG X, QIAN Y, FU B, et al.. Mitochondrial fragmentation limits NK cell-based tumor immuno-surveillance [J]. Nat Immunol , 2019, 20 ( 12 ): 1656-1667. 10.1038/s41590-019-0511-1 [ PubMed ] [ CrossRef ] [ Google Scholar ]
63. PRASAD P, GORDIJO C R, ABBASI A Z, et al.. Multifunctional albumin-MnO₂ nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response [J]. ACS Nano , 2014, 8 ( 4 ): 3202-3212. 10.1021/nn405773r [ PubMed ] [ CrossRef ] [ Google Scholar ]
64. MURPHY D A, CHENG H, YANG T, et al.. Reversing hypoxia with PLGA-encapsulated manganese dioxide nanoparticles improves natural killer cell response to tumor spheroids [J]. Mol Pharm , 2021, 18 ( 8 ): 2935-2946. 10.1021/acs.molpharmaceut.1c00085 [ PubMed ] [ CrossRef ] [ Google Scholar ]
65. MACE E M, DONGRE P, HSU H T, et al.. Cell biological steps and checkpoints in accessing NK cell cytotoxicity [J]. Immunol Cell Biol , 2014, 92 ( 3 ): 245-255. 10.1038/icb.2013.96 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
66. SORDO-BAHAMONDE C, LORENZO-HERRERO S, PAYER Á R, et al.. Mechanisms of apoptosis resistance to NK cell-mediated cytotoxicity in cancer [J]. Int J Mol Sci , 2020, 21 ( 10 ): 3726. 10.3390/ijms21103726 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
67. AU K M, PARK S I, WANG A Z. Trispecific natural killer cell nanoengagers for targeted chemoimmuno-therapy [J]. Sci Adv , 2020, 6 ( 27 ): eaba8564. 10.1126/sciadv.aba8564 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
68. WEI Z, YI Y, LUO Z, et al.. Selenopeptide nano-medicine activates natural killer cells for enhanced tumor chemoimmunotherapy [J/OL]. Adv Mater , 2022, 34 ( 17 ): e2108167. 10.1002/adma.202108167 [ PubMed ] [ CrossRef ] [ Google Scholar ]
69. YANG X, BIAN J, WANG Z, et al.. A bio-liposome activating natural killer cell by illuminating tumor homogenization antigen properties [J/OL]. Adv Sci (Weinh) , 2023, 10 ( 12 ): e2205449. 10.1002/advs.202205449 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press