The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more:
PMC Disclaimer
Ph
−
-ALL推荐治疗方案:
1. 优先推荐方案(AYA患者):
(1)CALGB 10403方案:Stock W. Blood, 2019, 133(14):1548-1559.
(2)COG AALL0232方案:Larsen EC. J Clin Oncol, 2016, 34:2380-2388.
(3) DFCI-ALL Consortium Protocol 00-01:Vrooman LM. J Clin Oncol, 2013, 31:1202-1210.
2. 一般推荐方案(非老年ALL):
(1)中国成人急性淋巴细胞白血病协作组(CALLG)—CALLG-2008治疗方案。
(2)GRAALL-2005方案:Huguet F. J Clin Oncol, 2018, 36:2514-2523.
(3)Hyper-CVAD方案(MDACC):Kantarjian H. Cancer, 2004, 101: 2788-2801.
(4)CALGB8811方案:Larson RA. Blood, 1995, 85(8): 2025-2037.
(5)MRC UKALLXII/ECOG E2993:Rowe JM. Blood, 2005, 106: 3760-3767.
(6)NOPHO ALL2008方案:Toft N. Leukemia, 2018, 32: 606-615.
(7)PETHEMA ALLOLD07方案:Ribera JM. Leuk Res, 2016, 41: 12-20.
(8)JALSG-ALL202-O方案:Sakura T. Leukemia, 2018, 32:626-632.
3. 老年ALL推荐方案:
(1)低强度方案:长春碱类+泼尼松;或长春碱类、泼尼松、巯嘌呤、甲氨蝶呤(POMP方案)。
(2)中等强度方案:
GRAALL:Gokbuget N. Blood, 2012, 120(21): 1493.
改良的DFCI老年ALL方案:Martell MP. Br J Haematol, 2013, 163: 458-464.
Mini-CVAD方案±CD22抗体偶联药物(Inotuzumab ozogamicin, IO):Kantarjian H. Lancet Oncol, 2018, 19: 240-248.
(3)高强度方案:
Hyper-CVAD方案(Ara-C剂量减为1 g/m
2
):Kantarjian H. Cancer, 2004, 101: 2788-2801.
CALGB9111方案:Larson RA. Blood, 1998, 92(5): 1556-1564.
二、Ph
+
-ALL的治疗
(一)非老年(年龄<60岁,包括<40岁和≥40岁的患者)Ph
+
-ALL的治疗
[29]
–
[34]
1. 诱导治疗:
(1)治疗原则:①临床试验。②多药化疗+TKI治疗。③TKI+糖皮质激素±长春碱类。
(2)治疗方案:诱导化疗和Ph
−
-ALL一样,建议予VCR或长春地辛、蒽环/蒽醌类药物、糖皮质激素为基础的方案(如VDP)诱导治疗,可以联合CTX(组成VDCP方案);鼓励进行临床研究。
一旦融合基因筛查(PCR方法)或染色体核型/FISH证实为Ph/BCR-ABL1阳性ALL(应明确转录本类型——P210、P190或少见类型转录本)则进入Ph
+
-ALL治疗流程,不再应用ASP。自确诊之日起即加用(或根据方案设计尽早开始)TKI,推荐药物及剂量:达沙替尼100~140 mg/d、伊马替尼400~800 mg/d等;优先推荐TKI持续应用的用药方式。对粒细胞缺乏(尤其是中性粒细胞绝对值<0.2×10
9
/L)持续时间较长(超过1周)、出现感染发热等并发症时,可以临时停用TKI,以减少患者感染风险。
(3)注意事项:诱导治疗第14天复查骨髓,根据骨髓(造血恢复情况和原始细胞比例)和血常规调整第3周的治疗。诱导治疗第28(+7)天评估疗效,复查骨髓形态学、细胞遗传学(诊断时有异常者)、BCR-ABL1融合基因定量及流式细胞术检测的MRD。有干细胞移植条件者,行HLA配型、积极寻找供者。
诱导治疗也可以在保证TKI用药的前提下适当降低化疗强度(如采用长春碱类药物、糖皮质激素联合TKI的方案),以保证患者安全。尽早开始腰穿、鞘注。
2. CR后的治疗:Ph
+
-ALL的缓解后治疗原则上参考一般Ph
−
-ALL的治疗(但可以不再使用ASP),应保证TKI的用药(TKI优先推荐持续应用,至维持治疗结束);无条件应用TKI或多种TKI不耐受的患者按一般Ph
−
-ALL的方案治疗。非老年Ph
+
-ALL的缓解后化疗强度应有一定的保证(基本同Ph
−
-ALL)。
(1)有合适供者的患者建议选择allo-HSCT,合并其他不良预后因素者优先选择allo-HSCT(如出现ABL1激酶突变、流式细胞术检测的MRD持续阳性或融合基因定量持续达不到主要分子学缓解、MRD指标呈上升趋势)。移植后继续用TKI维持治疗(使用时间为1~2年)。
MRD阳性的Ph
+
-ALL患者可以采用CD19/CD3双抗(Blinatumomab,贝林妥欧单抗)±TKI清除残留病细胞后行allo-HSCT,或直接行allo-HSCT;也可以进行探索性研究。
(2)无合适供者的患者,按计划继续多药化疗+TKI治疗。
BCR-ABL1融合基因转阴性者(尤其是3~6个月内转阴性者),可以考虑auto-HSCT,移植后予TKI维持治疗。
(3)治疗过程中应定期监测BCR-ABL1融合基因水平(推荐定量检测)和MRD(流式细胞术),MRD出现波动者应及时进行allo-HSCT。
(4)CNSL的预防治疗参考Ph
−
-ALL患者。
3. 维持治疗:
(1)可以应用TKI治疗者,采用TKI为基础的维持治疗(可以联合VCR、糖皮质激素,或6-MP和MTX,或干扰素),至CR后至少2年。
(2)不能坚持TKI治疗者,采用干扰素(可以联合VCR、糖皮质激素)维持治疗,300万U/次,隔日1次,缓解后至少治疗2年。或参考Ph
−
-ALL进行维持治疗。
(二)老年Ph
+
-ALL(年龄≥60岁)的治疗
老年Ph
+
-ALL的治疗原则以TKI为基础,化疗参考老年Ph
−
-ALL。TKI优先推荐持续应用,至维持治疗结束
[35]
–
[36]
。
1. 诱导治疗:
(1)临床试验。
(2)低强度治疗:TKI+糖皮质激素±长春碱类。
(3)中等强度治疗:TKI+多药化疗(如EWALL方案、CALGB10701方案)。
(4)高强度治疗:TKI + Hyper-CVAD方案(Ara-C剂量减为1 g/m
2
)。
2. CR后的治疗:继续TKI+糖皮质激素,或TKI+化疗巩固(可以参考上述方案的缓解后治疗)。
有移植意愿、合适供者的患者(尤其是伴有其他预后不良因素者)可以选择allo-HSCT。
3. 维持治疗:基本和年轻患者相同,采用TKI为基础的维持治疗。
推荐治疗方案:
(1)EsPhALL方案:Biondi A. Lancet Haematol, 2018, 5: e641-652.
(2)Hyper-CVAD方案联合达沙替尼或伊马替尼:
Thomas DA. Blood, 2004, 103: 4396-4407.
Ravandi F. Blood, 2010, 116(12):2070-2077.
(3)Northern Italy Leukemia Group Protocol 09/00方案:Bassan R. J Clin Oncol, 2010, 28:3644.
(4)JALSG-ALL202-O方案:Sakura T. Leukemia, 2018, 32:626-632.
(5)GIMEMA LAL0201-B方案:Vignetti M. Blood, 2007, 109:367.
(6)GMALL 06//99和07/03方案:Wassmann B. Blood, 2006, 108:1469.
(7)EWALL方案(老年Ph
+
ALL):Rousselot P. Blood, 2016, 128(6):774-782.
三、CNSL的诊断、预防和治疗
CNSL是急性白血病(尤其是ALL)复发的主要根源之一,严重影响ALL的疗效。诊断时有神经系统症状者应先进行头颅影像学检查(CT或MRI检查),排除出血或占位性病变后再考虑腰穿,无神经系统症状者按计划进行CNSL的预防。有条件的医疗机构应尽可能采用流式细胞术进行脑脊液检测
[37]
–
[39]
。
(一)CNSL状态分类
CNS-1:白细胞分类无原始淋巴细胞(不考虑脑脊液白细胞计数)。
CNS-2:脑脊液白细胞计数<5个/ml,可见原始淋巴细胞。
CNS-3:脑脊液白细胞计数≥5个/ml,可见原始淋巴细胞。
(二)CNSL诊断标准
目前CNSL尚无统一诊断标准。1985年讨论关于ALL预后差的危险因素时,提出CNSL下列诊断标准:脑脊液白细胞计数≥0.005×10
9
/L(5个/ml),离心标本证明细胞为原始细胞者,即可诊断CNSL。
流式细胞术检测脑脊液在CNSL中的诊断意义尚无一致意见,但出现阳性应按CNSL对待
[40]
。
(三)CNSL的预防
任何类型的成人ALL均应强调CNSL的早期预防。预防措施包括:①鞘内化疗;②放射治疗;③大剂量全身化疗;④多种措施联合应用。
1. 鞘内化疗:鞘内化疗是预防CNSL的主要措施。诱导治疗过程中没有中枢神经系统症状者可以在血细胞计数达安全水平后行腰穿、鞘注。鞘内注射主要用药包括:地塞米松、MTX、Ara-C。常用剂量为MTX 10~15 mg/次、Ara-C 30~50 mg/次、地塞米松5~10 mg/次,三联(或两联)用药。
巩固强化治疗中也应进行积极的CNSL预防,主要是腰穿、鞘注(鞘注次数一般应达6次以上,高危组患者可达12次以上),鞘注频率一般不超过2次/周。
2. 预防性头颅放疗:目前已较少采用预防性头颅放疗。18岁以上的高危组患者或40岁以上(不考虑造血干细胞移植)的患者可考虑预防性头颅放疗,放疗一般在缓解后的巩固化疗期或维持治疗时进行。预防性照射部位一般为单纯头颅,总剂量1800~2000 cGy,分次完成。
(四)CNSL的治疗
确诊CNSL的ALL患者,尤其是症状和体征明显者,建议先行腰穿、鞘注,每周2次,直至脑脊液正常;以后每周1次×4~6周。
也可以在鞘注化疗药物至脑脊液白细胞计数正常、症状体征好转后再行放疗(头颅+脊髓放疗)。建议头颅放疗剂量2000~2400 cGy、脊髓放疗剂量1800~2000 cGy,分次完成。进行过预防性头颅放疗的患者原则上不进行二次放疗。
四、难治复发ALL的治疗
(一)难治复发Ph
−
-ALL
难治复发Ph
−
-ALL的治疗目前无统一意见,可以选择的方案如下
[41]
–
[43]
。
1. 临床试验:如新药临床试验,各种靶点的CAR-T细胞治疗(如靶向CD19、CD22、CD20的单靶点或双靶点CAR-T细胞治疗B-ALL,靶向CD7的CAR-T细胞治疗T-ALL等)及研究者发起的临床研究(如CD38单抗治疗CD38阳性的ALL,西达本胺为基础的T-ALL方案,BCL-2抑制剂的应用等)等
[44]
–
[49]
。
2. 难治复发B-ALL可以考虑CD19/CD3双抗(Blinatumomab,贝林妥欧单抗)、CD22抗体偶联药物(IO)为基础的挽救治疗。
3. CD20阳性B-ALL患者可以联合CD20单克隆抗体(利妥昔单抗)治疗(如MopAD方案)。
4. 强化的Hyper-CVAD方案。
5. 中大剂量Ara-C为主的联合化疗方案(如氟达拉滨联合Ara-C方案)。
6. 其他联合化疗方案(如Vp16、异环磷酰胺、米托蒽醌方案)。
7. T-ALL可以采用奈拉滨(Nelarabine)单药或奈拉滨为基础的治疗。
(二)难治复发Ph
+
-ALL
1. 临床试验:如新药临床试验,各种靶点的CAR-T细胞治疗(如靶向CD19、CD22、CD20的单靶点或双靶点CAR-T细胞等)及研究者发起的临床研究(如BCL-2抑制剂的应用等)等。
2. 规范应用TKI为基础的治疗中复发、难治的患者:以ABL1激酶区突变结果、前期用药情况为依据,选择合适的TKI药物。可以继续联合化疗(参考初诊患者的诱导治疗方案)。
3. CD19/CD3双抗、CD22抗体偶联药物为基础的挽救治疗。
4. 无敏感TKI选择的患者可以采用复发难治Ph
−
-ALL的治疗方案。
无论是Ph
−
-ALL还是Ph
+
-ALL,在挽救治疗的同时即应考虑造血干细胞移植,及时寻找供者,尽快实施allo-HSCT。
推荐化疗方案:
1. MopAD方案:Kadia TM. Am J Hematol, 2015, 90(2): 120-124.
2. Augmented Hyper-CVAD:Fader S. Clin Lymph, Myeloma & Leuk, 2011, 11(1): 54-59.
3. Nelarabine, etoposide, cyclophosphamide治疗复发T-ALL:Commander LA. Br J Haematol, 2010, 150: 345-351.
第三部分ALL治疗反应定义、监测和随访
一、ALL治疗反应的定义
1. 骨髓和外周血疗效标准:
(1)CR:①外周血无原始细胞,无髓外白血病;②骨髓三系造血恢复,原始细胞<5%;③中性粒细胞绝对计数(ANC)>1.0×10
9
/L;④PLT>100×10
9
/L;⑤4周内无复发。
(2)CRi:PLT≤100×10
9
/L和(或)ANC≤1.0×10
9
/L。其他应满足CR的标准。
总反应率(ORR)=CR+CRi。
(3)难治性疾病:诱导治疗结束(一般指4周方案或Hyper-CVAD方案)未能取得CR/CRi。
(4)疾病进展(PD):外周血或骨髓原始细胞绝对数增加25%,或出现髓外疾病。
(5)疾病复发:已取得CR的患者外周血或骨髓又出现原始细胞(比例>5%),或出现髓外疾病。
2. CNSL的治疗反应:
(1)CNS缓解:CNS-2或CNS-3患者取得CNS-1状态。
(2)CNS复发:发生CNS-3状态或出现CNSL的临床症状(如面神经麻痹、脑/眼受累,或下丘脑综合征的表现)。
3. 纵隔疾病的治疗反应:纵隔疾病的疗效判断依靠胸部CT和(或)PET-CT。
(1)CR:CT检查纵隔肿块完全消失;或PET阴性。
(2)部分缓解(PR):肿大的纵隔最大垂直直径的乘积(SPD)缩小50%以上。
(3)PD:SPD增加25%以上。
(4)未缓解(NR):不满足PR或PD
(5)复发:取得CR的患者又出现纵隔肿大。
二、MRD的监测和完成治疗后的随访
1. ALL整个治疗期间应强调规范的MRD监测,并根据监测结果进行动态的危险度分层和治疗方案调整
[50]
–
[52]
。
(1)早期:诱导治疗期间(第14天)和(或)结束时(第28天左右)。
(2)缓解后定期监测:应保证治疗第12~16、18~22周的MRD监测。
诱导治疗结束、治疗第3个月(第12~16周)、6个月(第18~22周)流式细胞术检测的MRD阴性或<10
−4
可认为治疗结果满意。MRD检测可用于预后评估和危险度、治疗策略的调整;缓解后MRD水平持续较高或治疗过程中MRD由阴性转为阳性的患者具有较高的复发风险(危险度应上调),缓解后治疗应进行调整(如allo-HSCT)。
2. MRD的监测方法:
(1)经典的MRD检测技术:①IgH、TCR定量PCR检测(DNA水平);②4~6色流式细胞术检测MRD;③融合基因转录本的实时定量PCR(如BCR-ABL1)检测。
(2)新的高通量MRD检测技术:①基于EuroFlow ≥8色二代流式细胞术检测MRD;②IgH、TCR高通量测序。
3. Ph
+
-ALL疾病反复时应注意进行ABL1激酶区突变的分析。
4. 完成巩固强化治疗后的随访检查:
(1)第1年(每1~2个月1次):体格检查、血常规、肝功能(尤其是服用6-MP的患者)。
(2)第2年(每3~6个月1次):同第1年。
(3)第3年及以后(每6~12个月1次或根据病情需要。一般至诊断后5年可以停止复查):体格检查、血常规。
每个复查随访的时间点均应包括骨髓形态学和MRD(流式细胞术MRD和/或特异融合基因定量)的检测。
References
2.
NCCN Clinical Practice Guidelines in Oncology—Acute Lymphoblastic Leukemia(2021 Version 1.0)
http:// www.nccn.org
.
3.
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]
Blood.
2016;
127
(20):2391–2405. doi: 10.1182/blood-2016-03-643544.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Haferlach T, Kern W, Schnittger S, et al. Modern diagnostics in acute leukemias[J]
Crit Rev Oncol Hematol.
2005;
56
(2):223–234. doi: 10.1016/j.critrevonc.2004.04.008.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Mi JQ, Wang X, Yao Y, et al. Newly diagnosed acute lymphoblastic leukemia in China (II): prognosis related to genetic abnormalities in a series of 1091 cases[J]
Leukemia.
2012;
26
(7):1507–1516. doi: 10.1038/leu.2012.23.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Annino L, Vegna ML, Camera A, et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study[J]
Blood.
2002;
99
(3):863–871. doi: 10.1182/blood.v99.3.863.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Rowe JM, Buck G, Burnett AK, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993[J]
Blood.
2005;
106
(12):3760–3767. doi: 10.1182/blood-2005-04-1623.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Huguet F, Leguay T, Raffoux E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study[J]
J Clin Oncol.
2009;
27
(6):911–918. doi: 10.1200/JCO.2008.18.6916.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Barry E, DeAngelo DJ, Neuberg D, et al. Favorable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Protocols[J]
J Clin Oncol.
2007;
25
(7):813–819. doi: 10.1200/JCO.2006.08.6397.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
DeAngelo DJ, Stevenson KE, Dahlberg SE, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18-50 years with newly diagnosed acute lymphoblastic leukemia[J]
Leukemia.
2015;
29
(3):526–534. doi: 10.1038/leu.2014.229.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
Toft N, Birgens H, Abrahamsson J, et al. Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia[J]
Leukemia.
2018;
32
(3):606–615. doi: 10.1038/leu.2017.265.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Huguet F, Chevret S, Leguay T, et al. Intensified Therapy of Acute Lymphoblastic Leukemia in Adults: Report of the Randomized GRAALL-2005 Clinical Trial[J]
J Clin Oncol.
2018;
36
(24):2514–2523. doi: 10.1200/JCO.2017.76.8192.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
Vitale A, Guarini A, Ariola C, et al. Adult T-cell acute lymphoblastic leukemia: biologic profile at presentation and correlation with response to induction treatment in patients enrolled in the GIMEMA LAL 0496 protocol[J]
Blood.
2006;
107
(2):473–479. doi: 10.1182/blood-2005-04-1754.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
Kantarjian H, Thomas D, O'Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia[J]
Cancer.
2004;
101
(12):2788–2801. doi: 10.1002/cncr.20668.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Ribera JM, Oriol A, Morgades M, et al. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA ALL-AR-03 trial[J]
J Clin Oncol.
2014;
32
(15):1595–1604. doi: 10.1200/JCO.2013.52.2425.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Huguet F, Chevret S, Leguay T, et al. Intensified Therapy of Acute Lymphoblastic Leukemia in Adults: Report of the Randomized GRAALL-2005 Clinical Trial[J]
J Clin Oncol.
2018;
36
(24):2514–2523. doi: 10.1200/JCO.2017.76.8192.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403[J]
Blood.
2019;
133
(14):1548–1559. doi: 10.1182/blood-2018-10-881961.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
赵 邢力, 魏 辉, 林 冬, et al. 成人Ph阴性急性淋巴细胞白血病的优化治疗[J]
中华血液学杂志
2014;
35
(10):873–879. doi: 10.3760/cma.j.issn.0253-2727.2014.10.001.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
王 婧, 江 滨, 刘 开彦, et al. 2000-2013年成人急性淋巴细胞白血病患者疗效单中心分析[J]
中华血液学杂志
2015;
36
(9):726–732. doi: 10.3760/cma.j.issn.0253-2727.2015.09.002.
[
CrossRef
]
[
Google Scholar
]
20.
Willemze R, Labar B. Post-remission treatment for adult patients with acute lymphoblastic leukemia in first remission: is there a role for autologous stem cell transplantation?[J]
Semin Hematol.
2007;
44
(4):267–273. doi: 10.1053/j.seminhematol.2007.08.004.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Ribera JM, Oriol A, Bethencourt C, et al. Comparison of intensive chemotherapy, allogeneic or autologous stem cell transplantation as post-remission treatment for adult patients with high-risk acute lymphoblastic leukemia. Results of the PETHEMA ALL-93 trial[J]
Haematologica.
2005;
90
(10):1346–1356.
[
PubMed
]
[
Google Scholar
]
22.
Ribera JM, Ortega JJ, Oriol A, et al. Comparison of intensive chemotherapy, allogeneic, or autologous stem-cell transplantation as postremission treatment for children with very high risk acute lymphoblastic leukemia: PETHEMA ALL-93 Trial[J]
J Clin Oncol.
2007;
25
(1):16–24. doi: 10.1200/JCO.2006.06.8312.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Chiaretti S, Messina M, Foà R. BCR/ABL1-like acute lymphoblastic leukemia: How to diagnose and treat?[J]
Cancer.
2019;
125
(2):194–204. doi: 10.1002/cncr.31848.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Abaza Y, Kantarjian HM, Faderl S, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma[J]
Am J Hematol.
2018;
93
(1):91–99. doi: 10.1002/ajh.24947.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
Jain N, Lamb AV, O'Brien S, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype[J]
Blood.
2016;
127
(15):1863–1869. doi: 10.1182/blood-2015-08-661702.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Conter V, Valsecchi MG, Buldini B, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis[J]
Lancet Haematol.
2016;
3
(2):e80–86. doi: 10.1016/S2352-3026(15)00254-9.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
Martell MP, Atenafu EG, Minden MD, et al. Treatment of elderly patients with acute lymphoblastic leukaemia using a paediatric-based protocol[J]
Br J Haematol.
2013;
163
(4):458–464. doi: 10.1111/bjh.12561.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00[J]
J Clin Oncol.
2010;
28
(22):3644–3652. doi: 10.1200/JCO.2010.28.1287.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
30.
Vignetti M, Fazi P, Cimino G, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell'Adulto (GIMEMA) LAL0201-B protocol[J]
Blood.
2007;
109
(9):3676–3678. doi: 10.1182/blood-2006-10-052746.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
Malagola M, Papayannidis C, Baccarani M. Tyrosine kinase inhibitors in Ph+ acute lymphoblastic leukaemia: facts and perspectives[J]
Ann Hematol.
2016;
95
(5):681–693. doi: 10.1007/s00277-016-2617-y.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
Sasaki K, Jabbour EJ, Ravandi F, et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: A propensity score analysis[J]
Cancer.
2016;
122
(23):3650–3656. doi: 10.1002/cncr.30231.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
33.
Giebel S, Labopin M, Potter M, et al. Comparable results of autologous and allogeneic haematopoietic stem cell transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia in first complete molecular remission: An analysis by the Acute Leukemia Working Party of the EBMT[J]
Eur J Cancer.
2018;
96
:73–81. doi: 10.1016/j.ejca.2018.03.018.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
34.
Giebel S, Czyz A, Ottmann O, et al. Use of tyrosine kinase inhibitors to prevent relapse after allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: A position statement of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation[J]
Cancer.
2016;
122
(19):2941–2951. doi: 10.1002/cncr.30130.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
Ottmann OG, Wassmann B, Pfeifer H, et al. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL)[J]
Cancer.
2007;
109
(10):2068–2076. doi: 10.1002/cncr.22631.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
36.
Rousselot P, Coudé MM, Gokbuget N, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL[J]
Blood.
2016;
128
(6):774–782. doi: 10.1182/blood-2016-02-700153.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
Bürger B, Zimmermann M, Mann G, et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture[J]
J Clin Oncol.
2003;
21
(2):184–188. doi: 10.1200/JCO.2003.04.096.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
Surapaneni UR, Cortes JE, Thomas D, et al. Central nervous system relapse in adults with acute lymphoblastic leukemia[J]
Cancer.
2002;
94
(3):773–779. doi: 10.1002/cncr.10265.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
Sancho JM, Ribera JM, Oriol A, et al. Central nervous system recurrence in adult patients with acute lymphoblastic leukemia: frequency and prognosis in 467 patients without cranial irradiation for prophylaxis[J]
Cancer.
2006;
106
(12):2540–2546. doi: 10.1002/cncr.21948.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
Gong X, Lin D, Wang H, et al. Flow cytometric analysis of cerebrospinal fluid in adult patients with acute lymphoblastic leukemia during follow-up[J]
Eur J Haematol.
2018;
100
(3):279–285. doi: 10.1111/ejh.13011.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
Oriol A, Vives S, Hernández-Rivas JM, et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group[J]
Haematologica.
2010;
95
(4):589–596. doi: 10.3324/haematol.2009.014274.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
Faderl S, Thomas DA, O'Brien S, et al. Augmented hyper-CVAD based on dose-intensified vincristine, dexamethasone, and asparaginase in adult acute lymphoblastic leukemia salvage therapy[J]
Clin Lymphoma Myeloma Leuk.
2011;
11
(1):54–59. doi: 10.3816/CLML.2011.n.007.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
43.
Saltman D, Barlev A, Seshagiri D, et al. Management and treatment of relapsed or refractory Ph(−) B-precursor ALL: a webbased, double-blind survey of EU clinicians[J]
BMC Cancer.
2015;
15
:771. doi: 10.1186/s12885-015-1745-4.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
44.
Richard-Carpentier G, Kantarjian H, Jabbour E. Recent Advances in Adult Acute Lymphoblastic Leukemia[J]
Curr Hematol Malig Rep.
2019;
14
(2):106–118. doi: 10.1007/s11899-019-00503-1.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
45.
Kantarjian H, Ravandi F, Short NJ, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study[J]
Lancet Oncol.
2018;
19
(2):240–248. doi: 10.1016/S1470-2045(18)30011-1.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
46.
Pan J, Yang JF, Deng BP, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients[J]
Leukemia.
2017;
31
(12):2587–2593. doi: 10.1038/leu.2017.145.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
47.
Pan J, Niu Q, Deng B, et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia[J]
Leukemia.
2019;
33
(12):2854–2866. doi: 10.1038/s41375-019-0488-7.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
48.
Hu Y, Zhou Y, Zhang M, et al. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia[J]
Clin Cancer Res.
2021;
27
(10):2764–2772. doi: 10.1158/1078-0432.CCR-20-3863.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
49.
Chen YH, Zhang X, Cheng YF, et al. Long-term follow-up of CD19 chimeric antigen receptor T-cell therapy for relapsed/refractory acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation[J]
Cytotherapy.
2020;
22
(12):755–761. doi: 10.1016/j.jcyt.2020.08.002.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
50.
van Dongen JJ, van der Velden VH, Brüggemann M, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies[J]
Blood.
2015;
125
(26):3996–4009. doi: 10.1182/blood-2015-03-580027.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Articles from
Chinese Journal of Hematology
are provided here courtesy of
Editorial Office of Chinese Journal of Hematology