深度学习需要掌握的13个概率分布
重磅干货,第一时间送达
作者丨Sophia@知乎
来源丨https://zhuanlan.zhihu.com/p/158801020
转载 | 极市平台
本文仅用于学术分享,著作权归作者所有。如有侵权,请联系后台作删文处理。
在逛Github时发现了一个不错的总结,对深度学习的概率分布进行了总结。
作者的Github开源地址:https://github.com/graykode/distribution-is-all-you-needgithub.com
1.均匀分布(连续)代码: https://github.com/graykode/distribution-is-all-you-need/blob/master/uniform.py
均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。
2.伯努利分布(离散)代码: https://github.com/graykode/distribution-is-all-you-need/blob/master/bernoulli.py
先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。
利用二元交叉熵对二项分类进行分类。它的形式与伯努利分布的负对数相同。
3.二项分布(离散)代码: https://github.com/graykode/distribution-is-all-you-need/blob/master/binomial.py
参数为 n 和 p 的二项分布是一系列 n 个独立实验中成功次数的离散概率分布。
二项式分布是指通过指定要提前挑选的数量而考虑先验概率的分布。
4.多伯努利分布/分类分布(离散)代码: https://github.com/graykode/distribution-is-all-you-need/blob/master/categorical.py
多伯努利称为分类分布。
交叉熵和采取负对数的多伯努利分布具有相同的形式。
5.多项式分布(离散)代码: https://github.com/graykode/distribution-is-all-you-need/blob/master/multinomial.py
多项式分布与分类分布的关系与伯努尔分布与二项分布的关系相同。
6.β分布(连续)代码: https://github.com/graykode/distribution-is-all-you-need/blob/master/beta.py
β分布与二项分布和伯努利分布共轭。
利用共轭,利用已知的先验分布可以更容易地得到后验分布。
当β分布满足特殊情况(α=1,β=1)时,均匀分布是相同的。
7.Dirichlet 分布(连续)代码: https://github.com/graykode/distribution-is-all-you-need/blob/master/dirichlet.py