The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Oct 18; 53(5): 957–963.
Published online 2021 May 12. Chinese. doi: 10.19723/j.issn.1671-167X.2021.05.025
PMCID: PMC8517674

Language: Chinese | English

远端型遗传性运动神经病8例的临床、病理及遗传学特点

Clinical, pathological and genetic characteristics of 8 patients with distal hereditary motor neuropathy

刘 梅歌

北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China

Find articles by 刘 梅歌

方 朴

南昌大学第一附属医院神经内科,南昌 330006, Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

Find articles by 方 朴

王 严

北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China

Find articles by 王 严

丛 璐

北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China

Find articles by 丛 璐

范 洋溢

北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China

Find articles by 范 洋溢

袁 远

北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China

Find articles by 袁 远

徐 燕

北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China

Find articles by 徐 燕

张 俊

北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China

Find articles by 张 俊

洪 道俊

北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China 南昌大学第一附属医院神经内科,南昌 330006, Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China 北京大学人民医院神经内科,北京 100044, Department of Neurology, Peking University People's Hospital, Beijing 100044, China 南昌大学第一附属医院神经内科,南昌 330006, Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China HSPB1 c.379C>Tp.Arg127TrpADhetChaperone proteinP2 c.2177+1G>A-ADhettRNA SynthetaseVUS3 c.3631C>Tp.Arg1211CysADhetRNA/DNA metabolismVUS4 DYNC1H1 c.12823A>Cp.Thr4275ProADhetCytoskeletonVUS5 DNAJB2 c.184C>Tp.Arg62TrpARhozChaperone proteinVUS6 HSPB8 c.137C>Ap.Ala46AspADhetChaperone proteinVUS7 BSCL2 c.269C>Tp.Ser90LeuADhetER proteinP8 BICD2 c.1823C>Tp.Ser608LeuADhetCytoskeletonP

先证者3、先证者5的家系图及Sanger测序结果

Pedigree and sanger sequencing of patient 3 and patient 5

A, pedigree and chromatograms of the mutation sites confirmed by Sanger sequencing patient 3 with SETX mutation and his family; B, pedigree and chromatograms of the mutation sites confirmed by Sanger sequencing patient 5 with DNAJB2 and his family. Square, male; circle, female; black filled symbol, clinically and electromyogram confirmed affected individual; empty symbol, clinically healthy individual.

3. 讨论

dHMN是一组主要累及运动神经的遗传性周围神经病,感觉神经一般不受累或累及较轻。多项研究表明先证者一般于20岁前起病,但也有部分先证者在30岁以后发病。Frasquet等 [ 2 ] 报道的163例西班牙dHMN先证者最常见的起病年龄为2~10岁(47/163, 28.8%);Bansagi等 [ 3 ] 发现64例英国dHMN先证者的平均起病年龄为16岁;国内一项研究通过对中国南方地区24个dHMN家系、33例先证者者进行分析,发现该组先证者平均起病年龄为17.7岁(1~50岁),75.8%(24/33)的先证者在20岁前发病 [ 10 ] 。本研究纳入的8例dHMN先证者中,5例先证者在30岁以后起病,中位起病年龄为39.5岁,与张付峰等 [ 11 ] 的研究结果相似。考虑可能与以下因素有关:一方面dHMN起病隐匿,可能在发病早期阶段先证者未能察觉和及时就诊,另一方面可能与人种、地域等因素有关。除此之外,本研究纳入的病例数较少,可能存在一定偏差。

dHMN具有显著的临床异质性和遗传异质性,部分先证者与charcot-marie-tooth的轴索型(charcot-marie-tooth neuropathy type 2, CMT2)、青少年型肌萎缩侧索硬化(amyotrophic lateral sclerosis, ALS)、遗传性痉挛性截瘫具有较大的重叠性,同一致病基因可能导致不同的临床表型,如 SETX 基因突变既可导致伴有锥体束征的dHMN,也可以导致ALS [ 12 ] ,这使疾病的诊断变得更加复杂、困难。目前根据临床表型和基因表型,可将dHMN分为单纯性dHMN、dHMN伴轻微感觉受累、dHMN伴其他神经系统受累3个亚型。因此在临床工作中应注意一部分诊断为dHMN的先证者可能同时存在其他神经系统受累的症状,或仅在疾病的某个阶段表现为单纯性dHMN,需审慎对待基因型和临床表型之间的分析,并定期对先证者进行追踪随访以明确疾病演变。本研究中大部分先证者表现为经典的dHMN症状,如四肢远端肌肉无力萎缩、腱反射减弱或消失、足部畸形,但3例先证者查体发现锥体束征,通过基因检测发现分别为 AARS DYNC1H1 BSCL2 基因突变,既往文献报道上述3种基因突变导致的dHMN均可能存在腱反射活跃和病理征阳性等上运动神经元损害表现 [ 13 - 15 ] ,因此诊断dHMN时不仅要关注周围神经损害症状,还应考虑上运动神经元受累可能,并与运动神经元病相鉴别。

本研究中8例先证者针刺肌电图检查主要显示四肢远端肌肉的神经源性损害,神经电图显示所有的先证者均表现为运动神经波幅显著降低或波形无法引出,伴随运动神经传导速度降低,而感觉传导速度检查完全正常,提示运动轴索损害为主,感觉神经未受累。这种电生理改变特点符合远端型运动神经病的电生理特点。本研究2例先证者肌肉活检均提示神经源性骨骼肌损害,可见累及两型的成组分布的萎缩肌纤维,伴随群组化改变或靶样纤维,与国内外文献报道一致 [ 5 , 8 ] ,也进一步支持电生理诊断的结果。国内外关于dHMN先证者腓肠神经活检的报道不多见,有文献报道腓肠神经病理无明显异常 [ 5 , 11 ] ,本研究发现个别先证者的腓肠神经中出现薄髓纤维,是否提示可能存在感觉神经轻微受累,尚需扩大样本量或者长期随访进一步观察。

值得注意的是,本研究中5例先证者(病例1、2、3、5、7)血清CK轻度升高,在临床首诊实践中要注意和远端型肌病相鉴别。本研究中先证者针刺肌电图检查可见病理性自发电位、运动单位电位平均时限增宽、运动单位平均波幅呈不同程度增高、多相电位增多等神经源性损害改变,其中2例先证者完善肌肉活检,未见肌源性改变,而呈神经源性骨骼肌损害,因此CK升高可能归因于神经源性损害引起的去神经支配导致肌膜完整性损伤,Echaniz-Laguna等 [ 5 ] 的研究也支持这一结论。

dHMN是一组单基因遗传病,在遗传模式方面,大多数先证者呈常染色体显性遗传,部分先证者存在常染色体隐性遗传和X-连锁隐性遗传。目前已报道约30种dHMN致病基因,这些基因编码的蛋白参与细胞内各种生化活动,如蛋白折叠(HSP1,HSP8,DNAJB2)、RNA代谢(IGHMBP2,SETX,GARS,AARS)、轴浆运输(BICD2,DYNC1H1,DCTN1)和阳离子通道功能(ATP7A,TRPV4,KCC3)等。传统的一代测序基因检测阳性率为15%~20% [ 16 - 17 ] ,随着二代测序技术的发展,全外显子组测序技术提高了基因诊断的阳性率,更多新的基因突变被发现。英国一项研究对64例dHMN先证者进行二代测序,发现基因诊断的阳性率增至30%~40% [ 3 ] 。本研究通过对8例临床、电生理诊断为dHMN的先证者进行靶向捕获二代测序,发现8例先证者存在8种不同的已知dHMN致病基因突变,进一步提示dHMN的遗传异质性显著。其中3例为已报道的致病突变,基因诊断的阳性率为37.5%(3/8),与国内外现有研究基本类似 [ 3 , 18 ] 。检出5例dHMN相关致病基因新发突变,但临床意义尚不明确,后续的家系分析可能有助于评估突变的致病性 [ 2 ] 。本研究 SETX (c.3631C>T)、 DNAJB2 (c.184C>T)在家系分析中与疾病表型共分离,考虑可能为新发致病基因突变。另外3例先证者(突变分别为 AARS c.2177+1G>A, DYNC1H1 c.12823A>C, HSPB8 c.137C>A)由于家系信息获取存在客观上的难度,导致其致病性无法完全明确。除家系分析外,进一步的功能验证可弥补该研究的不足。国外一项研究表明, HSPB1 基因突变是dHMN最常见的致病原因 [ 18 ] ,国内文献报道的中国北方dHMN先证者最常见的致病基因为 HSPB1 IGHMBP2 GARS [ 19 ] ,而Xie等 [ 10 ] 对中国南方24个dHMN家系进行统计,发现最常见的致病基因为 GARS SORD 。本研究中3例突变编码蛋白属于热休克伴侣蛋白家族,分别为HSPB1、HSPB8、DNAJB2,提示热休克蛋白家族编码基因可能是dHMN主要的致病基因种类,但是本研究先证者样本较小,进一步扩大样本量有助于发现国内dHMN先证者的热点致病基因。

综上所述,dHMN是一组临床表现和基因均具有显著异质性的遗传性周围神经病,本研究提示国内dHMN先证者的首次诊断年龄偏大,临床医生对dHMN的认识上可能存在不足。二代测序技术广泛运用于dHMN先证者的致病基因检测,但仍有超过一半的先证者不能得到明确的基因诊断。本研究提示热休克蛋白家族基因可能是dHMN主要的致病基因,但是目前的数据尚没有发现国内dHMN先证者的热点突变基因。

Funding Statement

国家自然科学基金(81870996)

Supported by the National Natural Science Foundation of China (81870996)

References

1. Garg N, Park SB, Vucic S, et al. Differentiating lower motor neuron syndrome. J Neurol Neurosurg Psychiatry. 2017; 88 (6):474–483. doi: 10.1136/jnnp-2016-313526. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Frasquet M, Rojas-García R, Argente-Escrig H, et al. Distal hereditary motor neuropathies: mutation spectrum and genotype-phenotype correlation. Eur J Neurol. 2021; 28 (4):1334–1343. doi: 10.1111/ene.14700. [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Bansagi B, Griffin H, Whittaker RG, et al. Genetic heterogeneity of motor neuropathies. Neurology. 2017; 88 (13):1226–1234. doi: 10.1212/WNL.0000000000003772. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Bacquet J, Stojkovic T, Boyer A, et al. Molecular diagnosis of inherited peripheral neuropathies by targeted next-generation sequencing: molecular spectrum delineation. BMJ Open. 2018; 8 (10):e21632. [ PMC free article ] [ PubMed ] [ Google Scholar ]
5. Echaniz-Laguna A, Geuens T, Petiot P, et al. Axonal neuropathies due to mutations in small heat shock proteins: clinical, genetic, and functional insights into novel mutations. Hum Mutat. 2017; 38 (5):556–568. doi: 10.1002/humu.23189. [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17 (5):405–424. doi: 10.1038/gim.2015.30. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Tanabe H, Higuchi Y, Yuan JH, et al. Clinical and genetic features of charcot-marie-tooth disease 2F and hereditary motor neuropathy 2B in Japan. J Peripher Nerv Syst. 2018; 23 (1):40–48. doi: 10.1111/jns.12252. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Windpassinger C, Auer-Grumbach M, Irobi J, et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet. 2004; 36 (3):271–276. doi: 10.1038/ng1313. [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Novarino G, Fenstermaker AG, Zaki MS, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014; 343 (6170):506–511. doi: 10.1126/science.1247363. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Xie Y, Lin Z, Pakhrin PS, et al. Genetic and clinical features in 24 Chinese distal hereditary motor neuropathy families[J/OL]. Front Neurol, 2020, 11: 603003(2020-12-14)[2020-12-15]. https://pubmed-ncbi-nlm-nih-gov-443.webvpn.bjmu.edu.cn/333810781/.
11. 张 付峰, 卢 晓琴, 严 新翔, et al. 远端型遗传性运动神经病的临床特征分析 第二军医大学学报 2009; 30 (1):57–60. [ Google Scholar ]
12. De Jonghe P, Auer-Grumbach M, Irobi J, et al. Autosomal dominant juvenile amyotrophic lateral sclerosis and distal hereditary motor neuronopathy with pyramidal tract signs: synonyms for the same disorder. Brain. 2002; 125 (Pt 6):1320–1325. [ PubMed ] [ Google Scholar ]
13. Motley WW, Griffin LB, Mademan I, et al. A novel AARS mutation in a family with dominant myeloneuropathy. Neurology. 2015; 84 (20):2040–2047. doi: 10.1212/WNL.0000000000001583. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Luigetti M, Fabrizi GM, Madia F, et al. Seipin S90L mutation in an Italian family with CMT2/dHMN and pyramidal signs. Muscle Nerve. 2010; 42 (3):448–451. doi: 10.1002/mus.21734. [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Beecroft SJ, McLean CA, Delatycki MB, et al. Expanding the phenotypic spectrum associated with mutations of DYNC1H1. Neuromuscul Disord. 2017; 27 (7):607–615. doi: 10.1016/j.nmd.2017.04.011. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Dierick I, Baets J, Irobi J, et al. Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype-phenotype correlation study. Brain. 2008; 131 (Pt 5):1217–1227. [ PubMed ] [ Google Scholar ]
17. Rossor AM, Evans MR, Reilly MM. A practical approach to the genetic neuropathies. Pract Neurol. 2015; 15 (3):187–198. doi: 10.1136/practneurol-2015-001095. [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Liu X, Duan X, Zhang Y, Sun A, et al. Molecular analysis and clinical diversity of distal hereditary motor neuropathy. Eur J Neurol. 2020; 27 :1319–1326. doi: 10.1111/ene.14260. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain. 2020; 143 (Pt 12):3540–3563. [ PubMed ] [ Google Scholar ]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center