春霞 乔
四川大学华西医院 心理卫生中心 (成都 610041),
Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
巍 魏
四川大学华西医院 心理卫生中心 (成都 610041),
Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
丽红 邓
四川大学华西医院 心理卫生中心 (成都 610041),
Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
诗婉 陶
四川大学华西医院 心理卫生中心 (成都 610041),
Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
涛 李
四川大学华西医院 心理卫生中心 (成都 610041),
Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
四川大学华西医院 心理卫生中心 (成都 610041),
Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
浙江大学医学院附属精神卫生中心 杭州第七人民医院 (杭州 310013),
Hangzhou Seventh People's Hospital and Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, China
E-mail:
nc.ude.ujz@csujzoatil
n
d
代表第
n
个被试的第
d
个脑区,
代表海马原始体积,
代表海马预测体积,
为噪声的估计方差,
是归因于建模不确定性的方差。由偏倚分数计算公式可知,当患者原始海马体积小于预测海马体积,海马发育偏倚分数为负数,反之则为正数。但由于海马发育偏倚分数取自原始海马体积和预测海马体积的残差,因此海马发育偏倚分数与原始海马体积存在强线性关系,与既往大脑发育偏倚研究一致
[
29
]
。参考既往研究,本研究将海马原始体积与海马发育偏倚分数作线性回归,取其残差作为矫正后的海马发育偏倚分数
[
30
]
。
1.5. 统计学方法
由于大脑结构、大脑发育和认知功能均存在性别差异
[
17
,
31
]
,且本研究采用的大脑发育常模由男女分开构建,统计分析将在男性与女性中分别进行。使用单因素方差分析比较不同组间年龄、受教育年限和认知功能的差异,使用卡方检验比较不同组间性别差异。使用单因素协方差分析比较海马发育偏倚分数和海马体积在重性精神疾病组与健康对照组之间的差异,控制年龄、受教育年限和全脑体积。使用偏相关分析计算认知功能与海马发育偏倚分数之间的相关系数,控制年龄、受教育年限和全脑体积。以上分析均使用SPSS (v21) 进行。利用R (v3.6.1)中“lsr”工具包计算海马发育偏倚分数组间Cohen's
d
效应值。使用错误发现率(false discovery rate, FDR)方法进行
P
值多重比较校正,校正后
P
<0.05为差异有统计学意义。
以海马发育偏倚分数为因变量,组别为二分类自变量,年龄为调节因子。采用Johnson-Neyman (JN)检验方法探索年龄对重性精神疾病患者海马发育偏倚的调节作用
[
32
]
。不同于传统分类调节因子,JN方法将连续变量(年龄)作为调节因子,对重性精神疾病患者海马发育偏倚分数在不同年龄与健康对照的差异进行评估
[
33
]
。
2. 结果
2.1. 人口学资料特征、临床特征和认知功能
重性精神疾病患者和健康对照的人口学资料、临床特征和认知功能见
。年龄和受教育年限均存在组间差异(
P
<0.001)。认知功能组间比较发现正常对照组在图形延迟匹配任务、内外空间成套变化任务、快速视觉信息处理任务和空间工作记忆任务中都优于重性精神疾病组(
P
<0.05)。
表 1
General demographic, cognitive, and clinical data
一般人口学资料、认知功能及临床特征
Item
|
HCs (
n
=178)
|
FES (
n
=174)
|
BD (
n
=169)
|
MDD (
n
=184)
|
χ
2
/
F
|
|
FES: first-episode drug-naïve schizophrenia; BD: bipolar disorder; MDD: major depressive disorder; HCs: healthy controls; DMS-PC: delay matching-to-sample percentage correction; IED-SC: intra/extradimensional set shift stage completed; RVP-TCR: rapid visual information processing total correct rejections; RVP-ML: rapid visual information processing mean latency; SWM-BE: spatial working memory between search errors; SWM-WE: spatial working memory within errors; HAMD: Hamilton rating scale for depression; YMRS: Young mania rating scale; PANSS: positive and negative syndrome scale; TS: total score; PS: positive scale; NS: negative scale; GPS: general psychopathology scale. -: unmeasured value.
*
P
<0.05, vs. FES;
#
P
<0.05, vs. HCs.
|
Demographic information
|
|
|
|
|
|
|
(Female/male)/case
|
105/73
|
96/78
|
93/76
|
115/69
|
2.78
|
0.43
|
Age/yr.
|
24.20±9.26
*
|
20.02± 6.98
|
25.55±9.19
*
|
27.16±9.15
*
|
21.80
|
<0.001
|
Education years/year
|
13.93±4.42
*
|
11.11±2.89
|
13.51±3.01
*
|
13.60±3.58
*
|
25.35
|
<0.001
|
Onset age/yr.
|
−
|
18.91±6.85
|
−
|
−
|
−
|
−
|
Duration of illness/d
|
−
|
−
|
55.73±65.79
|
32.97±46.96
|
−
|
−
|
Cognitive evaluation
|
DMS-PC
|
90.12±7.49
*
|
77.71±14.03
|
86.28±9.18
*, #
|
85.00±11.04
*, #
|
37.55
|
<0.001
|
IED-SC
|
8.43±1.31
*
|
7.71±1.83
|
7.96±1.64
#
|
8.33±2.66
|
4.72
|
<0.01
|
RVP-TCR
|
250.24±24.01
*
|
236.31±24.18
|
244.35±23.06
*
|
246.43±23.08
*
|
10.05
|
<0.001
|
RVP-ML
|
406.35±94.41
*
|
484.58±156.38
|
434.29±118.13
*
|
427.97±115.40
*
|
11.42
|
<0.001
|
SWM-BE
|
20.84±20.48
*
|
39.08±25.14
|
25.41±19.94
*
|
25.35±18.55
*
|
22.22
|
<0.001
|
SWM-WE
|
2.65±6.16
|
3.45±5.42
|
2.26±3.51
|
1.93±3.01
*
|
3.04
|
0.03
|
Clinical evaluation
|
HAMD TS
|
−
|
−
|
10.13±7.15
|
20.77±5.38
|
−
|
−
|
YMRS TS
|
−
|
−
|
7.17±8.68
|
−
|
−
|
−
|
PANSS TS
|
−
|
83.97±21.96
|
−
|
−
|
−
|
−
|
PANSS PS
|
−
|
22.01±6.40
|
−
|
−
|
−
|
−
|
PANSS NS
|
−
|
21.91±8.39
|
−
|
−
|
−
|
−
|
PANSS GPS
|
−
|
40.06±11.51
|
−
|
−
|
−
|
−
|
2.2. 海马发育偏倚分数的组间差异
单因素协方差分析显示,重性精神疾病患者双侧海马发育偏倚分数均低于健康对照(FDR-
P
<0.05),提示重性精神疾病患者存在海马发育偏倚,其Cohen's
d
效应值精神分裂症>双相障碍>重性抑郁障碍(
)。海马体积除了女性FES组左侧之外,在其余疾病组与对照组间无明显差异(
P
>0.05),见
。由此可见,相比原始海马体积,海马发育偏倚分数可更敏感地捕捉到海马异常。
表 2
Comparison of hippocampal volume between groups
海马原始体积组间比较
Hippocampal volume
|
Female
|
|
Male
|
HCs (
n
=178)
|
FES (
n
=174)
|
BD (
n
=169)
|
MDD (
n
=184)
|
HCs (
n
=178)
|
FES (
n
=174)
|
BD (
n
=169)
|
MDD (
n
=184)
|
The abbreviations are explained in the note to Table 1.
*
P
<0.05, vs. HCs.
|
Left
|
4049.02±324.37
|
3910.42±293.29
*
|
3985.57±339.00
|
3983.99±320.98
|
|
4315.21±391.42
|
4275.51±347.52
|
4267.69±396.93
|
4376.88±332.80
|
Right
|
4252.89±319.98
|
4113.06±353.55
|
4216.64±368.90
|
4190.97±341.60
|
|
4515.21±403.81
|
4548.47±362.95
|
4516.65±460.38
|
4619.37±362.84
|
2.3. 年龄调节作用
JN分析结果显示年龄对海马发育偏倚有显著调节作用。低年龄段精神疾病患者〔<(25.83~28.56)岁〕海马发育偏倚分数低于健康对照,高年龄段精神疾病患者〔>(35.87~54.35)岁〕海马发育偏倚分数高于正常对照(
)。
2.4. 海马发育偏倚分数与认知功能的关系
偏相关分析(
)显示男性精神分裂症患者的右侧海马发育偏倚分数越高,空间工作记忆搜索间错误次数越多(
r
=0.32,FDR-
P
=0.04)。
3. 讨论
本研究利用大脑发育常模计算海马发育偏倚分数,发现精神分裂症、双相障碍及重性抑郁障碍患者的海马发育偏倚分数均低于健康对照,且精神分裂症患者的海马发育偏离正常发育轨迹最严重。年龄对海马发育偏倚分数的调节作用显示低年龄段患者海马发育偏倚分数低于健康对照组,高年龄段患者海马发育偏倚分数高于健康对照组。相关性分析显示男性精神分裂症患者的右侧海马发育偏倚分数与空间工作记忆搜索间错误数成正相关。本研究首次同时在三种重性精神疾病中以神经发育的角度探讨了海马异常及其与认知的相关性。
重性精神障碍患者在本研究中均表现出海马发育显著偏离正常轨迹,提示重性精神疾病可能共享神经发育异常的遗传背景或表征,比如CONSORTIUM发现精神分裂症与双相障碍和重性抑郁障碍有中到高度的遗传相关性
[
34
]
,REAY团队揭示多个与精神分裂症相关的基因与双相障碍、重性抑郁障碍共享
[
35
]
,研究发现上述三种疾病都存在外周神经生长营养因子的减少和谷氨酸神经传递异常等
[
36
-
37
]
。此外,不同重性精神疾病海马偏倚程度不尽相同提示不同疾病神经异常发育通路及程度有所差异,精神分裂症患者的海马发育偏差最严重,与既往精神分裂症患者海马体积下降比双相障碍和重性抑郁障碍更严重的研究结果一致
[
8
-
10
,
12
]
。与海马发育偏倚分数类似,脑龄差(大脑预测年龄与真实年龄的差值)可作为衡量大脑发育偏差的生物标记物
[
38
]
。多项研究表明,精神分裂症患者脑龄差明显大于双相障碍和抑郁患者
[
39
-
40
]
。值得注意的是,首发未用药精神分裂症患者的未服药状态也可能是导致海马发育偏差更大的因素之一
[
8
]
。既往研究发现抗精神病药物可以逆转精神分裂症发病早期即存在的海马体积下降
[
41
]
,提示海马发育偏移分数可以作为潜在的药物治疗预后预测指标。
调节作用分析显示不同年龄的重性精神障碍患者海马发育偏倚存在差异。低年龄患者海马发育偏倚分数低于健康对照,提示青年患者的海马可能存在发育迟滞,中间年龄段患者海马发育偏倚不明显,而高年龄患者海马发育偏倚分数高于健康对照,提示中老年患者海马可能存在提前老化。另外,由DIMA等
[
21
]
对海马体积发育的研究可知,海马体积发育在20~30岁之间达到顶峰,之后海马体积发育转为稳定期,直到60岁左右开始出现体积萎缩。本研究中年龄调节效应的低年龄分界点(25.83~28.56岁)与DIMA的研究一致,笔者猜测该年龄阶段海马发育出现转折,由快速发育阶段过渡为稳定发育阶段。建议未来海马结构或发育研究可以分年龄段比较。
偏相关分析结果显示海马发育偏倚分数越小,空间工作记忆搜索间错误次数越少,认知功能越好。而由海马发育偏倚分数计算公式可知,海马发育偏倚分数越小,海马受损越严重。存储假说认为,大脑存在抵御因脑部结构变化而衍生的脑部疾病的韧性和恢复力
[
42
]
。据报道,大脑连接程度的增加可减弱大脑损伤与认知之间的负相关强度,损伤程度高但连通性强的个体认知能力正常
[
43
]
。因此本研究中的结果可能由大脑的代偿能力所致。
本研究也存在一些缺陷:研究纳入双相障碍患者并非未用药患者,不能排除情绪稳定剂及抗抑郁药物治疗对大脑结构的影响,可能造成结果偏倚。未来的大脑发育研究应纳入未用药患者以验证本研究结果。另外,被试年龄范围局限在7~55岁且高年龄段参与者样本量较小。年龄调节作用结果显示高年龄阶段不同疾病组显著分界点差别较大,猜想可能与高年龄段样本量不足有关。需要更大年龄范围及更均匀年龄分布的患者群体去探索年龄对海马发育偏倚分数的调节作用。除此之外,本研究没有收集吸烟情况,但研究发现尼古丁可以诱导海马神经发生的减少
[
44
]
,吸烟史可能成为本研究的一个潜在混杂因素。
本研究结果提示精神分裂症、双相障碍及重性抑郁障碍患者均存在海马发育偏倚,其中精神分裂症患者偏倚最重。患者在不同年龄阶段表现不同的海马发育偏倚模式。通过大脑发育常模,使用海马发育偏倚分数对大脑结构进行研究能为探索重性精神疾病神经病理基础提供全新的视角。
* * *
利益冲突
所有作者均声明不存在利益冲突
Funding Statement
国家自然科学基金(No. 81920108018)资助
References
2.
GOMES F V, ZHU X, GRACE A A Stress during critical periods of development and risk for schizophrenia.
Schizophr Res.
2019;
2013
:107–113. doi: 10.1016/j.schres.2019.01.030.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
DU PLESSIS S, SCHEFFLER F, LUCKHOFF H, et al Childhood trauma and hippocampal subfield volumes in first-episode schizophrenia and healthy controls.
Schizophr Res.
2020;
215
:308–313. doi: 10.1016/j.schres.2019.10.009.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
TANTI A, WESTPHAL W P, GIRAULT V, et al Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis.
Hippocampus.
2013;
23
(9):797–811. doi: 10.1002/hipo.22134.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
MARTÍNEZ A L, BREA J, RICO S, et al Cognitive deficit in schizophrenia: from etiology to novel treatments.
Int J Mol Sci.
2021;
22
(18):9905. doi: 10.3390/ijms22189905.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
XU N, HUGGON B, SAUNDERS K E A Cognitive impairment in patients with bipolar disorder: impact of pharmacological treatment.
CNS Drugs.
2020;
34
(1):29–46. doi: 10.1007/s40263-019-00688-2.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
ROCK P L, ROISER J P, RIEDEL W J, et al Cognitive impairment in depression: a systematic review and meta-analysis.
Psychol Med.
2014;
44
(10):2029–2040. doi: 10.1017/S0033291713002535.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Van ERP T G, HIBAR D P, RASMUSSEN J M, et al Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium.
Mol Psychiatry.
2016;
21
(4):547–553. doi: 10.1038/mp.2015.63.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
HIBAR D P, WESTLYE L T, Van ERP T G, et al Subcortical volumetric abnormalities in bipolar disorder.
Mol Psychiatry.
2016;
21
(12):1710–1716. doi: 10.1038/mp.2015.227.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
SCHMAAL L, VELTMAN D J, Van ERP T G, et al Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group.
Mol Psychiatry.
2016;
21
(6):806–812. doi: 10.1038/mp.2015.69.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
KHALIL M, HOLLANDER P, RAUCHER-CHENE D, et al Structural brain correlates of cognitive function in schizophrenia: a meta-analysis.
Neurosci Biobehav Rev.
2022;
132
:37–49. doi: 10.1016/j.neubiorev.2021.11.034.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
SHI J, GUO H, LIU S, et al Subcortical brain volumes relate to neurocognition in first-episode schizophrenia, bipolar disorder, major depression disorder, and healthy controls.
Front Psychiatry.
2021;
12
:747386. doi: 10.3389/fpsyt.2021.747386.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
PATEL V, DAN C, PARIKH R, et al Addressing the burden of mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd edition.
Lancet.
2016;
387
(10028):1672–1685. doi: 10.1016/S0140-6736(15)00390-6.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
OWEN M J, O'DONOVAN M C, THAPAR A, et al Neurodevelop-mental hypothesis of schizophrenia.
Br J Psychiatry.
2011;
198
(3):173–175. doi: 10.1192/bjp.bp.110.084384.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
PINAYA W H L, MECHELLI A, SATO J R Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study.
Hum Brain Mapp.
2019;
40
(3):944–954. doi: 10.1002/hbm.24423.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
ZABIHI M, OLDEHINKEL M, WOLFERS T, et al Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models.
Biol Psychiatry Cogn Neurosci Neuroimaging.
2019;
4
(6):567–578. doi: 10.1016/j.bpsc.2018.11.013.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
FRAZA C J, DINGA R, BECKMANN C F, et al Warped Bayesian linear regression for normative modelling of big data.
Neuroimage.
2021;
245
:118715. doi: 10.1016/j.neuroimage.2021.118715.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
DIMA D, MODABBERNIA A, PAPACHRISTOU E, et al Subcortical volumes across the lifespan: data from 18, 605 healthy individuals aged 3-90 years.
Hum Brain Mapp.
2022;
43
(1):452–469. doi: 10.1002/hbm.25320.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
ANNETT M Hand preference observed in large healthy samples: classification, norms and interpretations of increased non-right-handedness by the right shift theory.
Br J Psychol.
2004;
95
(Pt 3):339–353. doi: 10.1348/0007126041528130.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
KAY S R, FISZBEIN A, OPLER L A The positive and negative syndrome scale (PANSS) for schizophrenia.
Schizophr Bull.
1987;
13
(2):261–276. doi: 10.1093/schbul/13.2.261.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
YOUNG R C, BIGGS J T, ZIEGLER V E, et al A rating scale for mania: reliability, validity and sensitivity.
Br J Psychiatry.
1978;
133
(5):429–435. doi: 10.1192/bjp.133.5.429.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
SEGONNE F, DALE A M, BUSA E, et al A hybrid approach to the Skull Stripping problem in MRI.
Neuroimage.
2004;
22
(3):1060–1075. doi: 10.1016/j.neuroimage.2004.03.032.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
FISCHL B, SALAT D H, BUSA E, et al Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
Neuron.
2002;
33
(3):341–355. doi: 10.1016/s0896-6273(02)00569-x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
DINGA R, FRAZA C J, BAYER J M, et al Normative modeling of neuroimaging data using generalized additive models of location scale and shape.
bioRxiv.
2021 doi: 10.1101/2021.06.14.448106.
[
CrossRef
]
[
Google Scholar
]
30.
KAUFMANN T, Van Der MEER D, DOAN N T, et al Common brain disorders are associated with heritable patterns of apparent aging of the brain.
Nat Neurosci.
2019;
22
(10):1617–1623. doi: 10.1038/s41593-019-0471-7.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
GE R, LIU X, LONG D, et al Sex effects on cortical morphological networks in healthy young adults.
Neuroimage.
2021;
233
:117945. doi: 10.1016/j.neuroimage.2021.117945.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
JOHNSON P O, FAY L C The Johnson-Neyman technique, its theory and application.
Psychometrika.
1950;
15
(4):349–367. doi: 10.1007/bf02288864.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
33.
BAUER D J, CURRAN P J Probing Interactions in Fixed and Multilevel Regression: Inferential and Graphical Techniques.
Multivariate Behav Res.
2005;
40
(3):373–400. doi: 10.1207/s15327906mbr4003_5.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
34.
CONSORTIUM C Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
Nat Genet.
2013;
45
(9):984–994. doi: 10.1038/ng.2711.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
REAY W R, CAIRNS M J Pairwise common variant meta-analyses of schizophrenia with other psychiatric disorders reveals shared and distinct gene and gene-set associations.
Transl Psychiatry.
2020;
10
(1):134. doi: 10.1038/s41398-020-0817-7.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
36.
RAO S, MARTINEZ-CENGOTITABENGOA M, YAO Y, et al Peripheral blood nerve growth factor levels in major psychiatric disorders.
J Psychiatr Res.
2017;
86
:39–45. doi: 10.1016/j.jpsychires.2016.11.012.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
LI C T, YANG K C, LIN W C Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies.
Front Psychiatry.
2019;
9
:767. doi: 10.3389/fpsyt.2018.00767.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
COLE J H, MARIONI R E, HARRIS S E, et al Brain age and other bodily ‘ages’: implications for neuropsychiatry.
Mol Psychiatry.
2019;
24
(2):266–281. doi: 10.1038/s41380-018-0098-1.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
TØNNESEN S, KAUFMANN T, De LANGE A M G, et al Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: a multisample diffusion tensor imaging study.
Biol Psychiatry Cogn Neurosci Neuroimaging.
2020;
5
(12):1095–1103. doi: 10.1016/j.bpsc.2020.06.014.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
BALLESTER P L, ROMANO M T, De AZEVEDO CARDOSO T, et al Brain age in mood and psychotic disorders: a systematic review and meta-analysis.
Acta Psychiatr Scand.
2022;
145
(1):42–55. doi: 10.1111/acps.13371.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
ZHANG S, HU J, LIU G, et al Chronic clomipramine treatment increases hippocampal volume in rats exposed to chronic unpredictable mild stress.
Transl Psychiatry.
2022;
12
(1):1–9. doi: 10.1038/s41398-022-02006-9.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
STERN Y, ARENAZA-URQUIJO E M, BARTRÉS-FAZ D, et al Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance.
Alzheimers Dement.
2020;
16
(9):1305–1311. doi: 10.1016/j.jalz.2018.07.219.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
43.
DEJONG N R, JANSEN J F A, Van BOXTEL M P J, et al Cognitive resilience depends on white matter connectivity: the Maastricht Study.
Alzheimers Dement.
2022 doi: 10.1002/alz.12758.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
44.
ABROUS D N, ADRIANI W, MONTARON M F, et al Nicotine self-administration impairs hippocampal plasticity.
J Neurosci.
2002;
22
(9):3656–3662. doi: 10.1523/JNEUROSCI.22-09-03656.2002.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]