1.
VAN ASCH C J J, LUITSE M J A, RINKEL G J E, et al Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis.
Lancet Neurol.
2010;
9
(2):167–176. doi: 10.1016/S1474-4422(09)70340-0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
WANG W, JIANG B, SUN H, et al Prevalence, incidence, and mortality of stroke in China clinical perspective.
Circulation.
2017;
135
(8):759–771. doi: 10.1161/CIRCULATIONAHA.116.025250.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
POON M T C, FONVILLE A F, SALMAN R A S Long-term prognosis after intracerebral haemorrhage: Systematic review and meta-analysis.
J Neurol Neurosurg Psychiatry.
2014;
85
(6):660–667. doi: 10.1136/jnnp-2013-306476.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
MOROTTI A, BOULOUIS G, DOWLATSHAHI D, et al Standards for detecting, interpreting, and reporting noncontrast computed tomographic markers of intracerebral hemorrhage expansion.
Ann Neurol.
2019;
86
(4):480–492. doi: 10.1002/ana.25563.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
廊坊市人民医院. 脑出血后血肿扩张的临床研究(2008-12-19) [2021-12-12]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=SNAD&filename=SNAD000001349506.
7.
CHALELA J A, KIDWELL C S, NENTWICH L M, et al Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison.
Lancet.
2007;
369
(9558):293–298. doi: 10.1016/S0140-6736(07)60151-2.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
PUSTINA D, COSLETT H B, TURKELTAUB P E, et al Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis.
Hum Brain Mapp.
2016;
37
(4):1405–1421. doi: 10.1002/hbm.23110.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
SHIN H C, ROTH H R, GAO M, et al Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning.
IEEE Trans Med Imaging.
2016;
35
(5):1285–1298. doi: 10.1109/TMI.2016.2528162.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
LONG J, SHELHAMER E, DARRELL T Fully convolutional networks for semantic segmentation.
IEEE Trans Pattern Anal Mach Intell.
2015;
39
(4):640–651. doi: 10.1109/TPAMI.2016.2572683.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
周宁宁. 基于深度学习的超声血管图像分割与识别软件的设计与实现. 重庆: 重庆大学, 2019.
12.
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation//International Conference on Medical image computing and computer-assisted intervention. Cham: Springer, 2015: 234-241.
13.
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation//Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2018: 3−11.
14.
HOORALI F, KHOSRAVI H, MORADI B. Automatic Bacillus anthracis bacteria detection and segmentation in microscopic images using UNet++. J Microbiol Methods, 2020, 177: 106056[2021-12-12]. https://www.sciencedirect.com/science/article/abs/pii/S0167701220307727?via%3Dihub. doi: 10.1016/j.mimet.2020.106056.
15.
LEI M, LI J, LI M, et al. An Improved UNet++ Model for Congestive Heart Failure Diagnosis Using Short-Term RR Intervals. Diagnostics (Basel), 2021, 11(3): 534[2021-12-12]. https://www.mdpi.com/2075-4418/11/3/534.
16.
郜峰利, 陶敏, 李雪妍, 等 基于深度学习的 CT 影像脑卒中精准分割
吉林大学学报 (工学版)
2020;
50
(2):678–684.
[
Google Scholar
]
17.
PEREZ L, WANG J. The effectiveness of data augmentation in image classification using deep learning(2017-12-13) [2021-12-12]. https://arxiv.org/abs/1712.04621.
18.
张志锐. 面向神经机器翻译的数据增强方法及应用. 合肥: 中国科学技术大学, 2019.
19.
GHIASI G, LIN T Y, LE Q V DropBlock: A regularization method for convolutional networks.
Adv Neural Inf Process Syst.
2018;
31
:10727–10737.
[
Google Scholar
]
20.
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770-778.
21.
王协, 章孝灿, 苏程 基于多尺度学习与深度卷积神经网络的遥感图像土地利用分类
浙江大学学报(理学版)
2020;
47
(6):715–723.
[
Google Scholar
]
22.
贾树开. 深度学习在图像分割中的应用. 成都: 电子科技大学, 2020.
23.
PERONE C S, CALABRESE E, COHEN-ADAD J. Spinal cord gray matter segmentation using deep dilated convolutions. Sci Rep, 2018: 5966[2021-12-12]. https://www.nature.com/articles/s41598-018-24304-3#citeas.
24.
MISRA D. Mish: A self regularized non-monotonic neural activation function [2021-12-12]. https://arxiv.org/vc/arxiv/papers/1908/1908.08681v2.pdf.
25.
陈伏娟. 改进堆叠级联网络在脑肿瘤分割的研究与实现. 成都: 电子科技大学, 2020.
26.
何奕松, 蒋家良, 余行, 等 影像分割中Dice系数和Hausdorff距离的比较
中国医学物理学杂志
2019;
36
(11):1307–1311. doi: 10.3969/j.issn.1005-202X.2019.11.012.
[
CrossRef
]
[
Google Scholar
]
27.
GREWAL M, SRIVASTAVA M M, KUMAR P, et al. Radnet: Radiologist level accuracy using deep learning for hemorrhage detection in ct scans//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington: IEEE, 2018: 281-284.
28.
张伟. 基于曲线演化的脑出血CT图像分割算法研究. 重庆: 重庆大学, 2019.
29.
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. Seattle: IEEE, 2020: 390-391.