The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022 Aug; 36(8): 929–933.
PMCID: PMC9379448

Language: Chinese | English

天玑骨科机器人联合Artis Zeego系统微创治疗骨盆骨折的初步应用研究

Preliminary application study of dual-robotic navigated minimally invasive treatment by TiRobot and Artis Zeego on pelvic fractures

可心 刘

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 可心 刘

梦真 由

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 梦真 由

默冉 黄

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 默冉 黄

铖 陈

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 铖 陈

碧宇 芮

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 碧宇 芮

洪 高

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 洪 高

云丰 陈

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 云丰 陈

晓林 李

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 晓林 李

伟 张

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 伟 张

玉强 孙

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China

Find articles by 玉强 孙

磊 王

上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China 上海交通大学附属第六人民医院骨科(上海  200233), Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, P. R. China 中国科学技术大学附属第一医院骨科(合肥  230001), Department of Orthopedics, the First Affiliated Hospital of University of Science and Technology of China, Hefei Anhui, 230001, P. R. China

corresponding author Corresponding author.
王磊,Email: moc.621@4622ielgnaw

结果

90例患者均顺利完成手术。术中出血量5~200 mL,中位数20 mL;无血管神经损伤发生。术后切口均Ⅰ期愈合。患者螺钉植入时间7.5~33.0 min,平均18.92 min;螺钉植入精度1.1~1.8 mm,平均1.56 mm。骶髂螺钉组、髋臼螺钉组、复合螺钉组分别于完成7、10、11例手术后进入适应期。随手术经验积累,螺钉植入时间有明显下降趋势。与初学期相比,3组熟练期螺钉植入时间缩短( P <0.05),但螺钉植入精度差异无统计学意义( P >0.05)。

结论

TiRobot联合Artis Zeego系统的双机器人模式辅助骨盆骨折手术安全、高效,有助于术者迅速掌握导航下的骨盆通道螺钉微创植入技术,在确保植入精度的前提下,明显缩短操作时间。

Keywords: 天玑骨科机器人, 三维导航, Artis Zeego 系统, 骨盆骨折, 学习曲线

Abstract

Objective

To summarize the surgical learning curve and preliminary operative experience of dual-robotic navigated minimally invasive treatment on pelvic fractures by TiRobot and Artis Zeego.

Methods

Between July 2019 and February 2021, 90 patients with pelvic fractures were treated with dual-robotic navigated minimally invasive surgery by TiRobot and Artis Zeego. There were 64 males and 26 females, with an average age of 46.5 years (range, 13-78 years). Body mass index was 14.67-32.66 kg/m 2 (mean, 23.61 kg/m 2 ). Causes of injuries included traffic accident in 43 cases, falling from height in 37 cases, low-energy injuries such as flat falls in 10 cases. The interval between injury and surgery was 1-36 days (mean, 7.3 days). According to the location of the implanted screws, the patients were divided into sacroiliac screw group ( n =33), acetabular screw group (acetabulum anterior/posterior column, n =24), composite screws group (sacroiliac and acetabulum anterior/posterior column, n =33). According to the screw implantation time and accuracy, the surgical learning curve was plotted, and the differences in the relevant indicators between learning stage and skilled stage were compared.

Results

All 90 patients successfully completed the operation, the intraoperative bleeding volume was 5-200 mL (median, 20 mL). There was no vascular or nerve injury. All incisions healed by first intention. The screw implantation time ranged from 7.5 to 33.0 minutes (mean, 18.92 minutes), and the screw implantation accuracy ranged from 1.1 to 1.8 mm (mean, 1.56 mm). According to the learning curve, the practice stage of 3 groups was reached after 7, 10, and 11 cases, respectively. With the accumulation of surgical experience, the screw implantation time had a significant downward trend. Compared with the learning stage, the screw implantation time on skilled stage in 3 groups significantly shortened ( P <0.05), but the difference in the screw implantation accuracy was not significant ( P >0.05).

Conclusion

TiRobot and Artis Zeego assisted pelvic fracture surgery is safe and efficient, which helps the surgeon to quickly master the pelvic channel screw surgery, and the operation time is significantly shortened on the premise of ensuring the implantation accuracy.

Keywords: TiRobot, three-dimensional navigation, Artis Zeego system, pelvic fracture, learning curve

骨盆骨折多为高能量损伤,占全身骨折的2%~8%,患者常伴多脏器损伤 [ 1 - 2 ] 。伤后需早期稳定骨盆环和髋臼,防止骨折部位进一步出血,促进早期功能恢复。通道螺钉内固定是一种稳定骨盆骨折及脱位的可靠方法,为了提高手术安全性和准确性,临床开始应用各种导航系统辅助植钉 [ 3 - 4 ] 。基于二维透视的计算机导航可降低医源性损伤以及植入物松动发生风险 [ 5 - 6 ] ,但对于具有复杂解剖结构的骨盆骨折,二维透视不能完全显示相关解剖结构。近年来,研究者开发了术中三维透视设备,清晰度和分辨率较二维透视明显提高,有效降低了手术相关并发症发生率 [ 7 - 9 ] 。Artis Zeego 系统是由德国西门子公司制造的机器人锥体束CT成像系统,具有自动扫描及成像视野较大的特点,能完成术中三维成像,较二维透视更直观,扫描时间也明显缩短。

北京天智航医疗科技股份有限公司制造的天玑骨科机器人(TiRobot)是我国自主研发的骨科机器人系统,目前主要用于脊柱和创伤内固定手术,通过光学跟踪系统实时跟踪手术路径和位置变化,及时更正路径偏差,实现了精准可靠的手术路径定位,穿刺精度为0.6~0.8 mm。2019年6月上海交通大学附属第六人民医院骨科将TiRobot及Artis Zeego系统联合用于治疗骨盆骨折,形成术中“双机器人”特色,在确保手术操作精准度前提下,提高了手术效率,取得了较好疗效。目前,已有文献报道骨科机器人辅助脊柱骨折手术的早期经验和学习曲线 [ 10 ] ,但关于辅助骨盆骨折手术的应用经验总结及学习曲线研究较少。现回顾分析2019年7月—2021年2月采用 TiRobot 及Artis Zeego 系统微创治疗的骨盆骨折患者临床资料,总结手术经验及相应设备布局原则,评估该双机器人模式手术学习曲线,为临床推广应用奠定基础。报告如下。

1. 临床资料

1.1. 患者选择标准

纳入标准:① 不稳定型骨盆骨折;② 骨折无明显移位;③ 骨折端无开放性损伤。排除标准:① 手术区域及附近有活动性感染;② 骨折采用经皮空心螺钉不能有效固定;③ 在骨科机器人手术计划路径上无法避开重要血管神经;④ 各种原因导致骨科机器人机械臂不能移动至术前计划位置;⑤ 骨科机器人示踪器不能有效固定;⑥ 骨科机器人主机术前规划提示术中导针与骨面夹角过小,无法完成入点固定,存在不可避免的误差。2019年7月—2021年2月,共90例患者符合选择标准纳入研究。

1.2. 一般资料

本组男64例,女26例;年龄13~78岁,平均46.5岁。身体质量指数14.67~32.66 kg/m 2 ,平均23.61 kg/m 2 。致伤原因:交通事故伤43例,高处坠落伤37例,跌倒等低能量损伤10例。受伤至手术时间1~36 d,平均7.3 d。合并四肢骨折35例,胸部外伤39例,颅脑损伤8例,腹部损伤13例,胸腰椎骨折28例。

1.3. 手术方法

1.3.1. 手术室中设备布局

由于Artis Zeego系统体积较大,手术室建造时固定安装于手术床尾端。TiRobot工作站靠墙,显示屏面对术者,便于术中实时监测;机械臂根据患者体位及手术部位调整,位于手术床侧方。见 图1

An external file that holds a picture, illustration, etc. Object name is zgxfcjwkzz-36-8-929-1.jpg

Schematic diagram of equipment layout in operating room

手术室中设备布局模式图

1.3.2. 患者体位摆放及示踪器安装位置原则

由于TiRobot机械臂底座较大,需尽可能安置于麻醉机对侧,以免干扰术者术中站位及操作,所以患者体位摆放应考虑术者在植钉操作时尽量位于麻醉机对侧;若双侧均需植钉操作,需提前计划麻醉机和TiRobot机械臂位置,预留足够术中操作空间。而Artis Zeego系统机械臂空间移动性强,对上述人机干扰相对较小,术中运行时不受影响,患者体位摆放无需将其位置纳入考虑。

此外,TiRobot实际操作时,机械臂经导向器连接保护套筒,延长了植钉路径上的轴向操作距离,因此在患者体位摆放时,可局部适当垫高,预先调整植钉路径角度,以利于术中操作时避开周围设备的干扰。

患者示踪器尽可能安装在目标通道刚性结构附近的骨质,多选择同侧或对侧髂前上棘、髂后上棘以及髂嵴,具体定位以不阻挡TiRobot机械臂运行为准。示踪器的朝向根据骨盆通道螺钉类型选择,偏头尾向螺钉(如髋臼前柱/后柱等)朝向头端或尾端,偏内外向螺钉(如骶髂螺钉等)及偏上下方向螺钉(如LCⅡ螺钉等)朝向头、尾端或侧方均可。需1次植入多枚骨盆通道螺钉时,患者示踪器反射平面需接近水平位。

1.3.3. 手术操作过程

本组手术均由高年资主治及以上医师主刀完成。全身麻醉后,患者取仰卧位,术区常规消毒,铺无菌巾。① TiRobot机械臂以无菌保护套覆盖后,连接基座及标定器;② Artis Zeego系统拍摄用于骨盆通道螺钉植入规划的二维图片,传入计算机规划软件,在TiRobot主控系统内规划相应螺钉植入路径,并保存显示;③ 在TiRobot 主控系统内进行模拟机械臂运动并适当调整,以确保机械臂位置及角度合适;④ 在TiRobot机械臂末端安装导向器,按照规划运动至接近皮肤表面处,插入软组织保护套筒,确定皮肤切口位置并作小切口,钝性分离软组织,将保护套筒抵至骨面;⑤ 沿套筒钻入螺纹导针,TiRobot主控显示屏可实时监测进针点位置和进针方向是否与规划路径相符,以便及时调整进针点及进针角度;⑥ Artis Zeego系统扫描,确认导针进针深度及位置,明确符合TiRobot主控系统规划路径要求后,沿导针拧入相应长度螺钉;⑦ Artis Zeego系统再次扫描确认螺钉位置满意后,拔出导针及示踪器,缝合切口,手术结束。术中 33 例植入骶髂螺钉(骶髂螺钉组),24 例植入髋臼前柱或后柱螺钉(髋臼螺钉组),33 例植入骶髂及髋臼前、后柱螺钉(复合螺钉组)。

1.4. 评价指标

① 螺钉植入时间:记录每例患者自Artis Zeego系统透视定位开始至最后1枚螺钉植入后再次透视结束为止时间,取均值(每例患者总植钉时间/总植钉数量)。

② 螺钉植入精度:螺钉植入完毕后,TiRobot主控系统自动计算螺钉实际植入与术前规划位置间的偏差(精度0.1 mm)。

③ 绘制学习曲线:将连续病例的螺钉植入时间用多项式趋势线绘制成学习曲线,将学习曲线陡降阶段定义为初学期,波动下降阶段定义为适应期,相对稳定阶段定义为熟练期,一旦学习曲线进入熟练期即可认为术者操作达到熟练程度。

1.5. 统计学方法

采用SPSS24.0统计软件进行分析。计量资料行正态性检验,如符合正态分布,数据以均数±标准差表示,组内比较采用配对 t 检验;如不符合正态分布,数据以 M Q 1 Q 3 )表示,组内比较采用秩和检验;检验水准 α =0.05。

2. 结果

本组90例患者均顺利完成手术。术中出血量5~200 mL,中位数20 mL;无血管神经损伤发生。术后切口均Ⅰ期愈合。患者螺钉植入时间7.5~33.0 min,平均18.92 min;螺钉植入精度1.1~1.8 mm,平均1.56 mm。

骶髂螺钉组、髋臼螺钉组、复合螺钉组分别于完成7、10、11例手术后进入适应期。随手术经验积累,螺钉植入时间有明显下降趋势( 图2 )。与初学期相比,3组熟练期患者螺钉植入时间缩短,差异有统计学意义( P <0.05);但螺钉植入精度比较差异无统计学意义( P >0.05)。见 表1

表 1

Comparison of screw implantation time and accuracy between learning stage and skilled stage

手术初学期及熟练期螺钉植入时间及植入精度比较

组别
Group
螺钉植入时间(min)
Screw implantation time (minutes)
螺钉植入精度(mm)
Screw implantation accuracy (mm)
Learning stage
Skilled stage
Statistic
Learning stage
Skilled stage
Statistic
骶髂螺钉组
Sacroiliac screw group
23.5(20.0,28.8) 10.0(8.4,11.0) Z =3.961
P <0.001
1.43±0.80 1.48±0.60 t =0.026
P =0.979
髋臼螺钉组
Acetabular screw group
28.75±2.55 15.42±1.88 t =10.036
P <0.001
1.52±0.75 1.55±0.90 t =0.031
P =0.980
复合螺钉组
Composite screws group
27.55±3.51 10.50±1.97 t =13.115
P <0.001
1.54±0.63 1.58±0.88 t =0.028
P =0.878

Trend chart of screw implantation time in 3 groupsDotted line represented the learning curve a. Sacroiliac screw group; b. Acetabular screw group; c. Composite screws group

3组螺钉植入时间趋势图

虚线示学习曲线 a. 骶髂螺钉组;b. 髋臼螺钉组;c. 复合螺钉组

3. 讨论

近年来,经皮内固定技术微创治疗骨盆骨折已逐渐在临床推广应用,相应地对临床医生也提出了更高技术要求,必须熟练掌握骨盆和髋臼及局部软组织解剖结构。内固定术中需反复多次透视明确植钉位置,导致医患接受的辐射量增加;同时,传统透视的二维图像显示范围有限,导致螺钉误植发生率较高。上述问题一直未得到很好解决。

TiRobot目前在脊柱外科应用较广泛,在其辅助下经皮植入椎弓根螺钉的准确率明显高于传统植钉技术,在提高手术安全性同时,减少了术中透视次数 [ 11 - 13 ] 。一项基于二维和三维导航系统辅助椎弓根螺钉植入精度的分析研究发现,后者精度明显提高 [ 14 ] 。而且三维透视还可以减少辐射暴露,提高手术安全性 [ 15 - 17 ] ,在其辅助导航下手术效率明显提高,手术时间缩短 [ 18 ]

Artis Zeego系统包含了数字减影血管造影实时导航及Dyna CT三维重建技术,对骨盆骨折定位较普通CT更准确、效率更高,可以减少术中透视次数,缩短螺钉植入时间。此外,该系统基座远离手术区域,机械臂空间移动性大,对TiRobot机械臂术中位移影响较小,在空间上完美配合了后者手术应用。本研究结果表明将双机器人应用于微创治疗骨盆骨折,显著提高了手术效率及精度,并发症少,临床效果满意。

本研究机器人手术学习曲线显示,初学者一般在完成10例左右手术操作后进入适应期,表明双机器人辅助微创治疗骨盆骨折手术操作难度较低,分析有两方面原因:一方面,机器人操作界面友好,操作步骤简洁;另一方面,我们总结了双机器人工作空间摆位和患者体位的配合,避免了术中人机操作相互干扰。当临床医生经过短暂的初学期和适应期后,可以针对不同手术部位进行经验总结,优化操作流程。本研究显示不同部位手术操作中,术者在熟练期的螺钉植入时间均较初学期明显缩短。但值得注意的是,熟练期与初学期的螺钉植入精度无明显差异,这表明双机器人辅助微创植钉技术可以保障不同术者在各个学习阶段均能做到安全、精准、高效操作。理论上,TiRobot螺钉植入精度误差在1 mm左右,但在实际操作中存在导针钻孔时在骨面打滑、受软组织张力影响等因素,使精度有所降低。本研究数据显示螺钉植入精度在1.1~1.8 mm,术后局部未发生相应并发症,提示仍在临床可接受范围内。

骨科机器人是医疗领域的新兴产业,主要用于微创、精准治疗,可提供精确导航和规划,是当前骨科临床治疗重要发展方向。我们初步临床应用经验展示了TiRobot联合Artis Zeego系统手术的高效率及高精准度,尤其在骨盆骨折微创治疗方面,通过人机互动的优化总结,术者能迅速掌握通道螺钉植入技术,操作安全可靠。

利益冲突 在课题研究和文章撰写过程中不存在利益冲突

伦理声明 研究方案经上海交通大学附属第六人民医院伦理委员会批准[2021-KY-031(K)];患者均签署知情同意书

作者贡献声明 刘可心:研究设计、资料收集及论文撰写;由梦真、陈铖:患者基本信息及影像学资料收集;黄默冉:数据处理;芮碧宇、高洪、陈云丰、李晓林、张伟、孙玉强:机器人相关技术支持;王磊:对文章的知识性内容作批评性审阅

References

1. Abdelrahman H, El-Menyar A, Keil H, et al. Patterns, management, and outcomes of traumatic pelvic fracture: insights from a multicenter study. J Orthop Surg Res, 2020, 15(1): 249. doi: 10.1186/s13018-020-01772-w.
2. Garcia M, Firek M, Zakhary B, et al Severe pelvic fracture in the elderly: High morbidity, mortality, and resource utilization. Am Surg. 2020; 86 (10):1401–1406. doi: 10.1177/0003134820964493. [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Takao M, Hamada H, Sakai T, et al Clinical application of navigation in the surgical treatment of a pelvic ring injury and acetabular fracture. Adv Exp Med Biol. 2018; 1093 :289–305. [ PubMed ] [ Google Scholar ]
4. Stübig T, Windhagen H, Krettek C, et al Computer-assisted orthopedic and trauma surgery. Dtsch Arztebl Int. 2020; 117 (47):793–800. [ PMC free article ] [ PubMed ] [ Google Scholar ]
5. Thakkar SC, Thakkar RS, Sirisreetreerux N, et al 2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology. Int J Comput Assist Radiol Surg. 2017; 12 (1):69–76. doi: 10.1007/s11548-016-1465-5. [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Passias BJ, Grenier G, Buchan J, et al Use of 3D navigation versus traditional fluoroscopy for posterior pelvic ring fixation. Orthopedics. 2021; 44 (4):229–234. doi: 10.3928/01477447-20210621-04. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Pisquiy JJ, Toraih EA, Hussein MH, et al. Utility of 3-dimensional intraoperative imaging in pelvic and acetabular fractures: A network meta-analysis. JBJS Rev, 2021, 9(6). doi: 10.2106/JBJS.RVW.20.00129.
8. Privalov M, Beisemann N, Swartman B, et al First experiences with intraoperative CT in navigated sacroiliac (SI) instrumentation: An analysis of 25 cases and comparison with conventional intraoperative 2D and 3D imaging. Injury. 2021; 52 (10):2730–2737. doi: 10.1016/j.injury.2020.02.093. [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Berger-Groch J, Lueers M, Rueger JM, et al Accuracy of navigated and conventional iliosacral screw placement in B- and C-type pelvic ring fractures. Eur J Trauma Emerg Surg. 2020; 46 (1):107–113. doi: 10.1007/s00068-018-0990-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Ariffin MHM, Ibrahim K, Baharudin A, et al Early experience, setup, learning curve, benefits, and complications associated with exoscope and three-dimensional 4K hybrid digital visualizations in minimally invasive spine surgery. Asian Spine J. 2020; 14 (1):59–65. doi: 10.31616/asj.2019.0075. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. 林书, 胡豇, 万仑, 等 “天玑” 骨科机器人辅助下经皮椎弓根螺钉植钉安全性评价 中国修复重建外科杂志 2021; 35 (7):813–817. [ PMC free article ] [ PubMed ] [ Google Scholar ]
12. 袁伟, 孟小童, 刘欣春, 等 机器人辅助经皮椎体后凸成形术治疗单/双节段骨质疏松性椎体压缩骨折临床疗效 中国修复重建外科杂志 2021; 35 (8):1000–1006. [ PMC free article ] [ PubMed ] [ Google Scholar ]
13. 袁春明, 肖亭英, 吕静, 等 骨科机器人辅助下与徒手胸腰椎骨折手术疗效的对比 四川医学 2021; 42 (11):1109–1113. [ PubMed ] [ Google Scholar ]
14. Xu P, Wang H, Liu ZY, et al An evaluation of three-dimensional image-guided technologies in percutaneous pelvic and acetabular lag screw placement. J Surg Res. 2013; 185 (1):338–346. doi: 10.1016/j.jss.2013.05.074. [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Keil H, Aytac S, Grützner PA, et al Intraoperative imaging in pelvic surgery. Z Orthop Unfall. 2019; 157 (4):367–377. doi: 10.1055/a-0732-5986. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Yu T, Cheng XL, Qu Y, et al Computer navigation-assisted minimally invasive percutaneous screw placement for pelvic fractures. World J Clin Cases. 2020; 8 (12):2464–2472. doi: 10.12998/wjcc.v8.i12.2464. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Hansen DG, Fabbri N Minimally invasive fixation of pelvic metastases by CT-assisted surgical navigation. Instr Course Lect. 2021; 70 :493–502. [ PubMed ] [ Google Scholar ]
18. Catala-Lehnen P, Nüchtern JV, Briem D, et al Comparison of 2D and 3D navigation techniques for percutaneous screw insertion into the scaphoid: results of an experimental cadaver study. Comput Aided Surg. 2011; 16 (6):280–287. doi: 10.3109/10929088.2011.621092. [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University