国际单位制 (SI) 于 2019 年 5 月修订后,普朗克常数
$h$
成为公斤级传播系统的佼佼者。然而,普朗克常数在日常校准中使用起来很困难或不切实际。因此,在许多应用中,替代的物理人工制品被用作传播的大众标准。用于测定阿伏伽德罗和普朗克常数的硅球的质量测量表明,硅球具有稳定性和高精度,因此可以用作质量标准。然而,硅球的材料和几何特性不同于通常用于传播千克的经典质量标准。因此,有必要确定硅球的质量校正以改进质量测量。本文研究了空气密度波动对硅球质量测量的空气浮力校正的影响。总结了三种不同称重过程的六种空气密度波动。此外,提出了一种通过应用实时空气密度数据来估计空气浮力修正来最小化空气密度波动影响的方法。使用 1 kg 硅球和各种材料的经典质量标准进行质量比较以进行方法验证。结果表明,改进的方法使用每个替代称重过程的实时空气密度可以减少测量误差 使用 1 kg 硅球和各种材料的经典质量标准进行质量比较以进行方法验证。结果表明,改进的方法使用每个替代称重过程的实时空气密度可以减少测量误差 使用 1 kg 硅球和各种材料的经典质量标准进行质量比较以进行方法验证。结果表明,改进的方法使用每个替代称重过程的实时空气密度可以减少测量误差
$8.7~\mu \text{g}$
至
$39.0~\mu \text{g}$
在空气浮力校正中,当使用硅球传播重新定义的 SI 质量单位时,这是不可忽略的。
After the revision of the International System of Units (SI) in May 2019, the Planck constant
$h$
became the top of the dissemination system for the kilogram. However, the Planck constant is difficult or impractical to use in daily calibrations. Thus, in many applications, alternative physical artefacts are used as mass standards for dissemination. Mass measurements of silicon spheres for the determination of Avogadro and Planck constants have shown that silicon spheres possess stability with high accuracy, thus can be utilized as mass standards. However, the material and the geometry properties of silicon spheres are different from classic mass standards commonly used for the dissemination of the kilogram. It is therefore necessary to determine mass corrections of silicon spheres to improve mass measurements. The effect of air density fluctuations in air buoyancy correction of silicon spheres mass measurements is investigated in this article. Six types of air density fluctuations for three different weighing processes are summarized. In addition, a method to minimize the impact of air density fluctuation by applying real-time air density data to estimate the air buoyancy correction is proposed. Mass comparisons using a 1 kg silicon sphere and classic mass standards in various materials were conducted for method verification. Results show that the improved method using the real-time air density of each alternative weighing process can reduce the measurement errors by
$8.7~\mu \text{g}$
to
$39.0~\mu \text{g}$
in the air buoyancy correction, which is not negligible when performing high accuracy mass measurements for the dissemination of the redefined SI mass unit using silicon spheres.