相关文章推荐
1. 上海交通大学 自动化系,上海  200240; 2. 系统控制与信息处理教育部重点实验室,上海  200240; 3. 上海工业智能管控工程技术研究中心,上海  200240; 4. 海洋智能装备与系统集成技术教育部实验室,上海交通大学,上海  200240; 5.上海交通大学 海洋装备研究院,上海, 200240 Infrared Dim and Small Target Detection Based on Dual-Channel Feature-Enhancement Integrated Attention Network CAI Yunze 1,2,3,4,5 , ZHANG Yanjun 1,2,3,4,5 1. Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240; 2. Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240; 3. Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai 200240; 4. Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240; 5. Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai, 200240 Abstract :Aiming at the problems existing in long-distance infrared target detection, such as less feature information, complex environment, more noise interference, and high missed detection rate and false alarm rate of traditional target detection algorithms, an infrared small target detection algorithm based on dual-channel feature enhancement attention network is proposed in this paper. The overall network structure mainly includes three parts: dual channel feature extraction module, feature enhancement module and integrated top-bottom attention module. Compared with single channel feature extraction, dual channel feature extraction can obtain more feature information. Feature enhancement module can enrich target features further. Moreover, the integrated top bottom attention module can adaptively enhance target features and weaken background noise. And then the algorithm improves the detection effect of dim and small targets in the infrared images. Finally, it is verified that the algorithm proposed in this paper has a better detection effect, and has a lower rate of missed detection and false detection. Key words infrared image dim and small target detection deep learning feature enhancement attention mechanism 程相伟, 张大旭, 杜永龙, 郭洪宝, 洪智亮. 基于X射线CT原位试验的平纹SiC f /SiC压缩损伤演化机理 [J]. 上海交通大学学报, 2024, 58(2): 232-241. 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测 [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. 林照晨, 张欣然, 刘紫阳, 贺风华, 欧阳磊. 基于深度学习的高超声速飞行器运动行为识别 [J]. 空天防御, 2024, 7(1): 48-55. 张晓宇, 杜祥润, 张佳梁, 檀盼龙, 杨诗博. 基于Deformable DETR的红外图像目标检测方法研究 [J]. 空天防御, 2024, 7(1): 16-23. 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨 [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法 [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. 高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法 [J]. 上海交通大学学报, 2023, 57(5): 613-623. 陈寂驰, 魏国华, 柴娟芳. 一种基于红外图像三维重建效果与精度的评价方法 [J]. 空天防御, 2023, 6(4): 42-50. 万安平, 杨洁, 缪徐, 陈挺, 左强, 李客. 基于注意力机制与神经网络的热电联产锅炉负荷预测 [J]. 上海交通大学学报, 2023, 57(3): 316-325. 王兵, 皮刚, 陈文成, 谢海峰, 施祥玲. 基于深度学习的柔性太阳翼琴铰表面缺陷检测方法 [J]. 空天防御, 2023, 6(1): 96-101. . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割 [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测 [J]. 上海交通大学学报, 2022, 56(9): 1256-1261. 吴庶宸, 戚宗锋, 李建勋. 基于深度学习的智能全局灵敏度分析 [J]. 上海交通大学学报, 2022, 56(7): 840-849. 唐泽宇, 邹小虎, 李鹏飞, 张伟, 余佳奇, 赵耀东. 基于迁移学习的小样本OFDM目标增强识别方法 [J]. 上海交通大学学报, 2022, 56(12): 1666-1674. 吕超凡, 言颖杰, 林力, 柴岗, 鲍劲松. 基于点云语义分割算法的下颌角截骨面设计 [J]. 上海交通大学学报, 2022, 56(11): 1509-1517.
 
推荐文章