:
twitter line
研究生: 陳谷昌
研究生(外文): Chen Guu-Chang
論文名稱: 貝氏方法在不確定性推理中的應用
論文名稱(外文): Applying Bayesian Approach in Uncertainty Reasoning
指導教授: 黃崇冀 黃崇冀引用關係
指導教授(外文): Huang Chuang-Chi
學位類別: 碩士
校院名稱: 淡江大學
系所名稱: 管理科學研究所
學門: 商業及管理學門
學類: 企業管理學類
論文種類: 學術論文
論文出版年: 1994
畢業學年度: 82
語文別: 中文
論文頁數: 90
中文關鍵詞: 不確定性 模組性 主觀貝氏學派 Polytree 演算法 結合 傳播
外文關鍵詞: Uncertainty Modularity Subjectivist Bayesian Polytree ination propagation
相關次數:
  • 被引用 被引用:0
  • 點閱 點閱:454
  • 評分 評分:
  • 下載 下載:0
  • 收藏至我的研究室書目清單 書目收藏:0
不確定性問題 (uncertainty) 的產生是由於相關知識 (knowledge)或資
訊 (information) 不完備所造成。當面臨簡單的問題時, 人類可以直覺
地 (intuitively) 推論出有用的結論, 主要的依據是一些經驗法則
(heuristic principles); 當面臨複雜的問題時,直覺的推理方式往往無
法有效地歸納出合理的結論。專家系統 (expert system) 是一個以知識
法則為依據, 以推理為方法之智慧型程式。然而在不確定的狀況下,知識
法則往往無法涵蓋所有的情況, 因此有些法則式的系統如 MYCIN
[Shortliffe 1975]、PROSPETOR [Duda et al. 1978] 採用數值性的方法
來表示及處理不確定性,然而其使用的推理邏輯具有模組性
(modularity) 的特徵, 允許使用 chaining (syllogism) 的推論方式,
因此仍然無法解決不確定性的問題。在不確定的狀態下推論, 必需考慮命
題 (propositions) 的來源及命題之間的因果關係 (causal
relations) , 條件機率 (conditional probability) 具有表達因果關
係的能力,以主觀貝氏學派(Subjectivist Bayesian) 的觀點來處理不確
定性, 可以提供許多特點以滿足專家系統的需求 [Spiegelhalter 1986]
。本文以貝氏方法來從事不確定性的推理, 主要的目的為 : . 說明不確
定性問題的本質 . 提供專家系統未來發展的參考 . 合理的表達證據的影
響力 . 建立使用貝氏方法的架構 Polytree 演算法 (Polytree
algorithm) [Kim and Pearl 1983; Pearl 1986; Pearl 1988] 提供了
一套完整的貝氏方法來進行證據式的推論 (evidential reasoning), 本
文主要採用此方法來處理不確定狀況下證據影響力的結合
(combination) 與傳播 (propagation)。

Because it is not always possible to get complete infor- mation
or knowledge about the evidence, so the uncertainty problems
arise. One of the characteristics of human reasoning is the
ability to draw inferences under uncertain circumstance. This
ability is quite useful and intuitive, but sometimes it may not
be able to form useful conclusions especially when a large
amount of hypotheses are presented. In rule-based expert
systems, the knowledge is represented in the form of the
production rules. The knowledge rules may have many exceptions
which cannot afford to enumerate. One way to summarize
exceptions is to assign to each proposition a numerical measure
of uncertainty and then combine these measures according to
some principles. This approach has been adopted by first-
generation expert systems such as MYCIN [Shortliffe 1975] and
PROSPECTOR [Duda et al. 1978]. Such an approach does not alter
the modularity of inference rules in classical logic, and the
modularity can not be sustained in problems of uncertainty. To
draw inferences under uncertain circumstance, we should
consider the source of evidence and the causal relations
between evidence. The causal relations can be represented in
conditional probabilities, and the subjective Bayesian view of
uncertainty can provide many of the features demanded by expert
systems [Spiegelhalter 1986]. The main purposes of this thesis
are : . to explicit the difficulties in plausible reasoning, .
to represent and establish the knowledge for reasoning under
uncertain circumstance, . to combine the impact of evidence
rationally, and . to establish the Bayesian scheme for
evidential reasoning. The Polytree algorithm is a Bayesian
method for evidential reasoning [Kim and Pearl 1983; Pearl
1986; Pearl 1988]. It is adopted to combine and propagate the
impact of evidence in this thesis.