The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more:
PMC Disclaimer
Zhongguo Dang Dai Er Ke Za Zhi.
2022 Feb 15; 24(2): 186–191.
Language:
Chinese
|
English
孤独症谱系障碍儿童的血清胰岛素样生长因子-1和胰岛素样生长因子结合蛋白-3水平研究
Serum levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in children with autism spectrum disorder
,
,
,
,
,
,
and
李 正
重庆市妇幼保健院儿童保健部,
400021
肖 贵元
重庆市妇幼保健院儿童保健部,
400021
何 春燕
重庆市妇幼保健院儿童保健部,
400021
刘 霞
重庆市妇幼保健院儿童保健部,
400021
樊 欣
重庆市妇幼保健院儿童保健部,
400021
赵 妍
重庆市妇幼保健院儿童保健部,
400021
王 念蓉
重庆市妇幼保健院儿童保健部,
重庆市妇幼保健院儿童保健部,
400021
Corresponding author.
)表示,组间比较采用两样本
t
检验;非正态分布的计量资料采用中位数(四分位数间距)[
M
(
P
25
,
P
75
)]表示,组间比较采用Mann-Whitney
U
检验。计数资料以例数和百分率(%)表示,组间比较采用卡方检验。使用偏相关分析法(控制年龄和性别2个变量)评估血清IGF-1、IGFBP-3水平与ABC、CARS量表评分的关系。以
P
<0.05为差异有统计学意义。
2. 结果
2.1. 基本情况
ASD组共150名儿童,轻-中度ASD占59.3%(89/150),重度ASD占40.7%(61/150);对照组165 名儿童。所有儿童均为汉族。两组在性别、是否足月、出生方式、出生体重、年龄、体重、身高、头围的比较差异均无统计学意义(
P
>0.05),见
。
表1
项目
|
对照组 (
n
=165)
|
ASD组 (
n
=150)
|
/
t
值
|
P
值
|
性别 (男/女, 例)
|
124/41
|
113/37
|
0.000
|
0.970
|
是否足月 (早产/足月, 例)
|
9/156
|
10/140
|
0.203
|
0.652
|
出生方式 (顺产/剖宫产, 例)
|
77/88
|
75/75
|
0.353
|
0.554
|
出生体重 (
, kg)
|
3.2±0.8
|
3.3±0.7
|
0.343
|
0.731
|
年龄 (
, 月)
|
50±20
|
48±16
|
1.061
|
0.293
|
体重 (
, kg)
|
17±4
|
17±4
|
1.272
|
0.214
|
身高 (
, cm)
|
105±10
|
103±10
|
1.763
|
0.081
|
头围 (
, cm)
|
50.3±1.6
|
50.2±1.8
|
0.422
|
0.683
|
2.2. ASD组和对照组血清IGF-1和IGFBP-3水平的比较
ASD组儿童血清IGF-1低于对照组儿童(
P
<0.05),两组儿童血清IGFBP-3水平比较差异无统计学意义(
P
>0.05),见
。
表2
ASD组和对照组血清IGF-1和IGFBP-3水平
组别
|
例数
|
IGF-1 [
M
(
P
25
,
P
75
), ng/mL]
|
IGFBP-3 (
, μg/mL)
|
对照组
|
165
|
113(90, 152)
|
3.7±0.8
|
ASD组
|
150
|
106(80, 139)
|
3.6±0.9
|
Z
/
t
值
|
|
-2.302
|
1.612
|
P
值
|
|
0.021
|
0.108
|
2.3. 不同程度ASD儿童血清IGF-1和IGFBP-3水平的比较
重度ASD儿童血清IGF-1、IGFBP-3水平低于轻-中度ASD儿童(
P
<0.05),见
。
表3
轻-中度和重度ASD儿童血清IGF-1和IGFBP-3水平
组别
|
例数
|
IGF-1 [
M
(
P
25
,
P
75
), ng/mL]
|
IGFBP-3 (
, μg/mL)
|
轻-中度ASD组
|
89
|
117(92, 152)
|
3.9±0.8
|
重度ASD组
|
61
|
82(58, 114)
|
3.1±0.8
|
Z
/
t
值
|
|
-4.398
|
5.223
|
P
值
|
|
<0.001
|
<0.001
|
2.4. 不同年龄段ASD组与对照组的血清IGF-1和IGFBP-3水平的比较
按年龄分组后进行比较,发现在2~3岁年龄段中,ASD组血清IGF-1低于对照组(
P
<0.05),其余年龄段两组间差异无统计学意义(
P
>0.05)。IGFBP-3水平在所有年龄段中,ASD组和对照组间比较差异均无统计学意义(
P
>0.05)。见
。
表4
不同年龄段ASD组与对照组的血清IGF-1和IGFBP-3水平
年龄 (岁)
|
IGF-1 [
M
(
P
25
,
P
75
), ng/mL]
|
IGFBP-3 (
, μg/mL)
|
对照组
|
ASD组
|
P
值
|
对照组
|
ASD组
|
P
值
|
2~
|
103(77, 125)
|
83(58, 110)
|
-2.255
|
0.024
|
3.4±0.6
|
3.2±1.1
|
0.967
|
0.344
|
>3~
|
104(84, 131)
|
98(98, 139)
|
-0.402
|
0.687
|
3.6±0.7
|
3.6±0.8
|
0.205
|
0.839
|
>4~
|
137(95, 160)
|
122(104, 169)
|
-0.114
|
0.909
|
3.8±0.7
|
3.8±0.7
|
0.363
|
0.703
|
>5~
|
144(116, 191)
|
121(93, 158)
|
-1.871
|
0.059
|
4.2±0.8
|
3.8±0.8
|
1.861
|
0.069
|
>6~7
|
215(137, 308)
|
145(109, 299)
|
-0.270
|
0.310
|
4.1±0.7
|
4.2±1.1
|
0.166
|
0.897
|
2.5. 不同性别ASD组与对照组的血清IGF-1和IGFBP-3水平
ASD组和对照组男童血清IGF-1水平低于女童(
P
<0.05),两组不同性别间IGFBP-3水平差异无统计学意义(
P
>0.05),见
。
表5
不同性别ASD组与对照组的血清IGF-1和IGFBP-3水平
项目
|
对照组 (
n
=165)
|
ASD组 (
n
=150)
|
男 (
n
=124)
|
女 (
n
=41)
|
Z
/
t值
P
值
|
男 (
n
=113)
|
女 (
n
=37)
|
Z
/
t值
P
值
|
IGF-1 [
M
(
P
25
,
P
75
), ng/mL]
|
110(88, 143)
|
133(104, 166)
|
-1.976
|
0.048
|
101(79, 128)
|
121(97, 152)
|
-2.343
|
0.019
|
IGFBP-3 (
, μg/mL)
|
3.7±0.8
|
3.7±0.7
|
0.153
|
0.928
|
3.5±0.9
|
3.8±1.0
|
1.624
|
0.126
|
2.6. lnIGF-1和血清IGFBP-3水平与ABC和CARS量表得分的相关性
经正态性检验,IGF-1数据为偏态分布,取其自然对数(lnIGF-1)后将其转换为正态分布数据,IGFBP-3数据呈正态分布。控制性别和年龄2个因素后,偏相关分析发现血清IGFBP-3水平与ABC(
r
=-0.17,
P
=0.04)、CARS量表(
r
=-0.40,
P
<0.001)评分均呈负相关。lnIGF-1与CARS量表评分呈负相关(
r
=-0.32,
P
<0.001),与ABC量表评分无相关性(
P
=0.26)。见
。
lnIGF-1、血清IGFBP-3水平与ABC、CARS量表评分的相关性 [ASD]孤独症谱系障碍;[ABC]孤独症行为量表;[CARS]孤独症评定量表;[lnIGF-1]胰岛素样生长因子-1的自然对数;[IGFBP-3]胰岛素样生长因子结合蛋白-3。
3. 讨论
ASD病因复杂,目前研究认为与导致神经元信号中断的突触功能障碍有关。PI3K/Akt/mTOR通路中的信号分子已被证明在不同的临床亚型ASD中均被破坏,该通路成为ASD研究热点
[
13
]
。IGF-1与其受体结合可激活PI3K/Akt/mTOR通路,抑制神经细胞异常生长和增殖
[
14
]
。本研究调查2~7岁ASD儿童血清IGF-1和IGFBP-3水平,采用ABC、CARS量表对ASD儿童核心症状进行评估,发现ASD组儿童血清IGF-1水平低于对照组,2~3岁ASD组儿童血清IGF-1水平低于对照组,血清IGF-1、IGFBP-3水平与ASD儿童核心症状呈负相关。
本研究发现ASD组儿童血清IGF-1水平低于对照组。国外研究却发现ASD组的IGF-1水平高于对照组
[
15
]
,该研究中47.5% ASD组患儿正在使用药物治疗,85%的病例接受特殊培训,而药物治疗和特教训练都可能会导致血清IGF-1水平增加
[
16
]
。而本研究招募的研究对象为初诊ASD的患儿,没有接受任何干预治疗,这可能是血清IGF-1水平不一致的原因。在ASD儿童的血液、脑脊液、尿液样本中发现了不同水平的IGF-1,可能与ASD属于高度异质性疾病有关,需要更深入研究其疾病亚型
[
17
]
。IGFBP-3是一种储存和转运IGF-1的重要分泌蛋白,人体内大约90%的IGF与IGFBP-3结合以防止被降解,从而影响其生物活性,本研究中ASD组和对照组IGFBP-3水平无差异,说明IGF-1和IGFBP-3血清变化并不完全同步,原因可能是由于IGF系统由2个IGF(IGF-1、IGF-2)和6个IGF结合蛋白组成,IGFBP-3既与IGF-1结合,还负责转运IGF-2,且具有其独立的生物学效应
[
18
]
。
本研究发现重度ASD儿童血清IGF-1和IGFBP-3水平低于轻-中度ASD儿童,提示低水平的IGF-1、IGFBP-3可能会加重ASD儿童的严重程度。IGF-1/PI3K/Akt/mTOR通路广泛存在于神经系统中,该通路在细胞的生长存活、增殖凋亡等过程中发挥重要生物学功能
[
19
]
。推测IGF-1对PI3K/Akt/mTOR通路的影响,可能通过其他脑源性神经营养因子实现,这一过程呈剂量效应,且由多个神经因子调配控制
[
20
]
。此外,本研究对ASD儿童血清IGF-1和IGFBP-3水平与核心症状进行相关性分析发现,血清IGFBP-3水平与ABC、CARS量表评分均呈负相关。lnIGF-1与CARS量表评分呈负相关,提示IGF-1和IGFBP-3可能与ASD儿童的核心症状有关,但相关性较弱,此前国外研究也多认为IGF-1水平与基于CARS量表评分的核心症状之间没有相关性
[
4
,
15
]
,其相关性可能需要进一步的研究。
有文献报道IGF-1和IGFBP-3水平在婴儿期较低,随着年龄增加会在性发育过程中达到高峰,呈现男女童之间血清IGF-1水平差异
[
21
]
,与本研究结果类似。本研究发现按年龄分组,2~3岁ASD儿童的血清IGF-1水平低于对照组,其余各年龄组无差异。各种产前及新生儿时期不利因素,尤其是围生期暴露于缺氧和酸中毒的环境导致母亲免疫激活,促进白细胞介素6等炎症因子释放,白细胞介素6增加导致发育中胎儿的IGF-1和IGFBP-3供应减少,增加后代ASD发病的风险
[
22
]
。研究报道低出生体重儿、早产儿的血清IGF-1水平降低,与大脑发育不良、体格生长受限之间有较强的相关性
[
23
]
。外周循环中IGF-1的增长速率与早产儿纠正年龄为2岁时的发育水平有关
[
24
]
。而窒息缺氧、低出生体重、早产等正是ASD的高危因素。此外,部分ASD儿童出生后1~3年内出现大脑早期过度生长,临床表现为头围迅速增大,与脑神经突触连接发展、重要神经环路建立的时间相吻合,可能是由于IGF-1等神经营养因子缺乏,导致部分脑区过度生长
[
25
]
。根据内分泌调节的婴儿-儿童-青少年生长模式学说
[
26
]
,婴幼儿期生长发育主要与营养状况有关,而学龄前期除营养之外,主要受生长激素控制,在这阶段IGF-1受生长激素影响更大,推测这可能是大年龄段2组间血清IGF-1差异无统计学意义的原因,但需要进一步研究。
本研究尚存在一些局限和不足。研究人群来自单一中心,且属于门诊人群,样本量及代表性有限,需要前瞻性设计的多中心大样本研究来验证本研究的结果;由于版权限制没有使用更权威结构化工具,如自闭症诊断观察量表(Autism Diagnostic Observation Schedule)和自闭症诊断访谈量表修订版(Autism Diagnostic Interview-Revised)。这是国内首次调查ASD儿童血清IGF-1和IGFBP-3水平及与核心症状相关性的研究。本研究发现早期儿童血清IGF-1降低可能与ASD疾病发展相关,血清IGF-1、IGFBP-3水平与ASD儿童核心症状具有一定关联,但需要进一步研究。
基金资助
重庆市妇幼保健院科研项目(2019YJMS09)。
参 考 文 献
1.
Maenner MJ, Shaw KA, Baio J, et al..
Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016
[J].
MMWR Surveill Summ
, 2020,
69
(
4
): 1-12. DOI: 10.15585/mmwr.ss6904a1.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Zhou H, Xu X, Yan WL, et al..
Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years
[J].
Neurosci Bull
, 2020,
36
(
9
): 961-971. DOI: 10.1007/s12264-020-00530-6.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
Pennuto M, Pandey UB, Polanco MJ.
Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: from molecular pathogenesis to therapeutic perspectives
[J].
Front Neuroendocrinol
, 2020,
57
: 100821. DOI: 10.1016/j.yfrne.2020.100821. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Anlar B, Oktem F, Bakkaloglu B, et al..
Urinary epidermal and insulin-like growth factor excretion in autistic children
[J].
Neuropediatrics
, 2007,
38
(
3
): 151-153. DOI: 10.1055/s-2007-990282. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Mills JL, Hediger ML, Molloy CA, et al..
Elevated levels of growth-related hormones in autism and autism spectrum disorder
[J].
Clin Endocrinol (Oxf)
, 2007,
67
(
2
): 230-237. DOI: 10.1111/j.1365-2265.2007.02868.x. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Vanhala R, Turpeinen U, Riikonen R.
Low levels of insulin-like growth factor-I in cerebrospinal fluid in children with autism
[J].
Dev Med Child Neurol
, 2001,
43
(
9
): 614-616. DOI: 10.1017/s0012162201001116. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Riikonen R, Makkonen I, Vanhala R, et al..
Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism
[J].
Dev Med Child Neurol
, 2006,
48
(
9
): 751-755. DOI: 10.1017/S0012162206001605. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Vargas DL, Nascimbene C, Krishnan C, et al..
Neuroglial activation and neuroinflammation in the brain of patients with autism
[J].
Ann Neurol
, 2005,
57
(
1
): 67-81. DOI: 10.1002/ana.20315. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
American Psychiatric Association .
Diagnostic and Statistical Manual of Mental Disorders (DSM-5)
[M]. 5th ed. Washington: American Psychiatric Publishing, 2015: 31-87.
[
Google Scholar
]
10.
杨玉凤.
儿童发育行为心理评定量表
[M]. 北京: 人民卫生出版社, 2016: 203-207.
[
Google Scholar
]
11.
Guo JY, Zhang YQ, Li Y, et al..
Comparison of the difference in serum insulin growth factor-1 levels between chronological age and bone age among children
[J].
Clin Biochem
, 2021,
96
: 63-70. DOI: 10.1016/j.clinbiochem.2021.07.008. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Krug DA, Arick JR, Almond PJ.
Autism screening instrument for educational planning-third edition
[M]. Austin, TX: Pro-ed Inc, 2008.
[
Google Scholar
]
13.
Poopal AC, Schroeder LM, Horn PS, et al..
Increased expression of the PI3K catalytic subunit p110δ underlies elevated S6 phosphorylation and protein synthesis in an individual with autism from a multiplex family
[J].
Mol Autism
, 2016,
7
: 3. DOI: 10.1186/s13229-015-0066-4.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
洪晓文, 陈燕惠.
胰岛素样生长因子1在孤独症谱系障碍中的研究进展
[J].
中国儿童保健杂志
, 2019,
27
(
1
): 56-58. DOI: 10.11852/zgetbjzz2018-1095. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Şimşek F, Işık Ü, Aktepe E, et al..
Comparison of serum VEGF, IGF-1, and HIF-1α levels in children with autism spectrum disorder and healthy controls
[J].
J Autism Dev Disord
, 2021,
51
(
10
): 3564-3574. DOI: 10.1007/s10803-020-04820-w. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Schilling C, Blum WF, Heuser I, et al..
Treatment with antidepressants increases insulin-like growth factor-I in cerebrospinal fluid
[J].
J Clin Psychopharmacol
, 2011,
31
(
3
): 390-392. DOI: 10.1097/JCP.0b013e3182189d86. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
Hong SJ, Vogelstein JT, Gozzi A, et al..
Toward neurosubtypes in autism
[J].
Biol Psychiatry
, 2020,
88
(
1
): 111-128. DOI: 10.1016/j.biopsych.2020.03.022. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
Ranke MB.
Insulin-like growth factor binding-protein-3 (IGFBP-3)
[J].
Best Pract Res Clin Endocrinol Metab
, 2015,
29
(
5
): 701-711. DOI: 10.1016/j.beem.2015.06.003. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
Dyer AH, Vahdatpour C, Sanfeliu A, et al..
The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity
[J].
Neuroscience
, 2016,
325
: 89-99. DOI: 10.1016/j.neuroscience.2016.03.056. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Cioana M, Michalski B, Fahnestock M.
Insulin-like growth factor and insulin-like growth factor receptor expression in human idiopathic autism fusiform gyrus tissue
[J].
Autism Res
, 2020,
13
(
6
): 897-907. DOI: 10.1002/aur.2291. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Hyun SE, Lee BC, Suh BK, et al..
Reference values for serum levels of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in Korean children and adolescents
[J].
Clin Biochem
, 2012,
45
(
1-2
): 16-21. DOI: 10.1016/j.clinbiochem.2011.10.003. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Careaga M, Murai T, Bauman MD.
Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates
[J].
Biol Psychiatry
, 2017,
81
(
5
): 391-401. DOI: 10.1016/j.biopsych.2016.10.020.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Hellström A, Ley D, Hansen-Pupp I, et al..
Role of insulinlike growth factor 1 in fetal development and in the early postnatal life of premature infants
[J].
Am J Perinatol
, 2016,
33
(
11
): 1067-1071. DOI: 10.1055/s-0036-1586109.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Hansen-Pupp I, Hövel H, Löfqvist C, et al..
Circulatory insulin-like growth factor-I and brain volumes in relation to neurodevelopmental outcome in very preterm infants
[J].
Pediatr Res
, 2013,
74
(
5
): 564-569. DOI: 10.1038/pr.2013.135. [
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
Riikonen R.
Insulin-like growth factors in the pathogenesis of neurological diseases in children
[J].
Int J Mol Sci
, 2017,
18
(
10
): 2056. DOI: 10.3390/ijms18102056.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Karlberg J, Jalil F, Lam B, et al..
Linear growth retardation in relation to the three phases of growth
[J].
Eur J Clin Nutr
, 1994,
48
(
Suppl 1
): S25-S43; discussion S43-S44. [
PubMed
]
[
Google Scholar
]
Articles from
Chinese Journal of Contemporary Pediatrics
are provided here courtesy of
Xiangya Hospital, Central South University