字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
:
twitter line
研究生: 蔡昆憲
研究生(外文): Kuen-Shian Tsai
論文名稱: 華語語音聽辨測驗語料之設計與驗證
論文名稱(外文): Development and Verification of Mandarin Recognition Test Materials
指導教授: 楊順聰 楊順聰引用關係
指導教授(外文): Shuenn-Tsong Young
學位類別: 博士
校院名稱: 國立陽明大學
系所名稱: 醫學工程研究所
學門: 工程學門
學類: 生醫工程學類
論文種類: 學術論文
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 116
中文關鍵詞: 語音聽辨測驗 華語單音節字音語音聽辨測驗 詞表 音素平衡 同質性 基因演算法 信度
外文關鍵詞: word recognition test Mandarin monosyllable recognition test MMRT word list phonemic balance homogeneity genetic algorithm reliability
相關次數:
  • 被引用 被引用: 9
  • 點閱 點閱:3783
  • 評分 評分:
  • 下載 下載:245
  • 收藏至我的研究室書目清單 書目收藏:0
語音聽辨測驗是臨床上常見的一種聽力檢測,可廣泛地應用在診斷、評估以及復健等不同的應用方向上。然而,過去的語音聽辨測驗在設計與使用上存在一些可能會影響信度與效度的問題,包括:(1)人工設計詞表的耗時與困難,導致可用的詞表數量不多,且詞表的音素平衡不一定能被滿足;(2)半表常由全表任意拆解而成,使得半表間的音素分佈不一致,進而影響表間等效性;(3)測試項目間不具備同質性,使得半表間的難易度不一致,進而影響表間等效性;(4)台灣缺少具標準化錄音的語音聽辨測驗語料。因此,本研究的目的在設計一個華語單音節字音語音聽辨測驗供臨床與研究需求使用,並設計一系列的方法以提升測驗的信度與效度。

本研究中首先探討如何將詞表的設計條件視為一最佳化問題,並提出基因演算法來處理此最佳化問題。基因演算法可以自動地根據所指定各個音素的數量來產生所需的詞表。研究中並以不同的族群數量來評估基因演算法應用於音素平衡詞表設計的可收斂性與執行效率。研究結果顯示,可收斂性與執行效率在族群數量為100的條件下可取得平衡。在此條件下執行100次基因演算法可得到45張音素平衡詞表,平均每76秒即可得到一張音素平衡詞表。由結果來看,此基因演算法具有強健且有效率的搜尋測試材料的能力,且能夠很容易地擴充運用於單字詞、多字詞或句子為主的測驗,甚至其他聲調語言的測驗設計上。

為了提升測驗的信度與效度,除了語音聽辨測驗常見的設計規範:熟悉度、音素平衡與表間等效性外,本論文強調詞表內的測試項目需具備良好的同質性,亦即測試項目的變異度需受到控制。在華語單音節字音語音聽辨測驗的設計中,為了確保測試項目為受測者所熟悉,我們挑選最常出現的700個單音節字音作為測試語料。為了確保測試項目的同質性,我們藉由評估這700個單音節字音的心理量化函數以及五項心理量化特徵值,並從中挑出348個具高度同質性的單音節字音作為建構詞表的材料。為了實現全表(50個測試項目)的音素平衡,我們由華語4733個不同的單音節字來推算出全表內聲母、韻母以及聲調期望的出現次數。半表(25個測試項目)的音素平衡,乃是藉由將全表內聲母、韻母以及聲調期望的出現次數平均分配到A組半表與B組半表兩個組別來實現。本研究透過基因演算法,從348個具高度同質性的單音節字音中,組出三張A組半表與三張B組半表,且這些半表可以互相配對組成九張全表。藉由此設計,華語單音節字音語音聽辨測驗的半表與全表均滿足熟悉度高、同質性高且為音素平衡的條件,統計結果亦顯示這些半表與全表均具備良好表間等效性,且其平均的測試項目變異度與受測者間變異度均優於過去的語音聽辨測驗詞表。本研究接著以30位感音神經性聽損患者,在安靜環境下,以其最舒適響度值播音施測,探討華語單音節字音語音聽辨測驗的臨床信度。統計結果證實這六張半表與九張全表在安靜環境下施測的重測信度、表間信度以及折半信度均優於過去的語音聽辨測驗詞表。

總結來說,本研究提出的基因演算法應用於語音聽辨測驗設計時,具有優異的可收斂性與執行效率。此外,研究結果亦支持我們藉由控制測試項目的同質性,以及令半表與全表均滿足音素平衡以確保半表與全表間之等效性,可有效提升語音聽辨測驗的信度的假設。我們據此所發表的華語單音節字音語音聽辨測驗具備良好的信度,未來可進一步探究此份測驗在臨床與研究對華語使用者語音聽辨能力評估的效度。論文最後並討論了未來建議進行的相關研究。
Word recognition tests have been widely used for hearing diagnosis and aural rehabilitation. However, some problems existing in previous word recognition tests may affect the reliability and validity of tests, including: (a) the time consuming and difficulty of constructing word lists manually led to a small number of word lists and even the phonemic balance of word lists might not be achieved; (b) 25-item word lists are usually constructed by arbitrarily dividing 50-item word lists into two parts, and hence the phonemic distributions of these half lists might be inconsistent to affect their interlist equivalence; (c) test items in word lists are not homogeneous, and hence the recognition difficulty of these half lists might be inconsistent to affect their interlist equivalence; (d) the lack of standardized-recorded speech recognition materials in Taiwan. Therefore, the purpose of this study was to design a Mandarin monosyllable recognition test (MMRT) for clinical and research applications, as well as to develop a set of approaches to improve the reliability and validity of word recognition tests.

The study first investigated how to convert the design of word lists into an optimization problem, and proposed a genetic algorithm to solve this problem. Our genetic algorithm can construct word lists automatically according to the desired number of each phoneme. Different population sizes were used to evaluate the convergence and efficiency of the genetic algorithm applying to the construction of phonemically balanced word lists in this study. The result showed that population size of 100 is a better setting to balance the convergence and efficiency. Under this condition, we can obtain 45 phonemically balanced word lists in 100 runs, and spend 76 seconds to obtain a phonemically balanced word list on average. By the results, the genetic algorithm performed an efficient, robust, and low-complexity search of the problem space and can be easily modified to adapt to the word-list construction of other languages.

For the improvement of the reliability and validity in word recognition tests, in addition to satisfying the major design criteria of familiarity, phonemic balance, and interlist equivalence, this study emphasized the homogeneity of test items in word lists. In the development of MMRT, to achieve the goal of high subject familiarity with the test material, we selected the 700 most frequently occurring monosyllables to be the test material. The homogeneity of the test material was achieved by evaluating five psychometric characteristics of these 700 monosyllables to obtain 348 homogeneous monosyllables with similar psychometric functions for constructing the word lists. The phonemic balance of the 50-item word lists was achieved by deriving the desired numbers of initials, finals, and tones in these lists according to their occurrence frequencies in 4733 monosyllabic words. The phonemic balance of the 25-item word lists was achieved by equally dividing the desired numbers of initials, finals, and tones in the 50-item word lists into two parts, called half-A and half-B lists. Three half-A lists and three half-B lists were constructed by the genetic algorithm from the 348 homogeneous monosyllables, and they could be paired to form nine 50-item word lists. Accordingly, all MMRT word lists are familiar, homogeneous, and phonemically balanced. The statistic results indicated that the six 25-item word lists and nine 50-item word lists exhibited interlist equivalence with respect to their psychometric functions and five psychometric characteristics; moreover, their interitem and mean intersubject variability are lower than those of previously reported word lists. This thesis then evaluated the clinical reliability of MMRT word lists, using 30 listeners with sensorineural hearing loss, presented at their most comfortable level in quiet. The statistic results also indicated the test-retest, interlist, and split-half reliability of the MMRT word lists are better than previously reported word lists.

In conclusion, our genetic algorithm exhibits excellent convergence and efficiency in the design of word lists. In addition, the study results also support our hypothesis that controlling the homogeneity of test items and making 25-item and 50-item word lists are all phonemically balanced can reduce the variability of test items and hence improve the reliability of word recognition test. The validity and diagnosis sensitivity of the MMRT should be examined in further studies since the MMRT word lists have good reliability. Some further studies and applications are recommended in the end of this thesis.
ACKNOWLEDGEMENT I
中文摘要 III
ABSTRACT V
TABLE OF CONTENTS VIII
LIST OF TABLES XII
LIST OF FIGURES XV
CHAPTER 1 INTRODUCTION 1
1.1 THE PROBLEMS 2
1.2 DISSERTATION OVERVIEW 6
CHAPTER 2 BACKGROUND 7
2.1 HISTORY OF SPEECH AUDIOMETRY 7
2.1.1 Threshold measures 7
2.1.2 Assessment of word-recognition ability 9
2.2 TEST ADMINISTRATION OF SPEECH AUDIOMETRY 12
2.2.1 Response format 13
2.2.2 Scoring Methods 13
2.2.3 Alternative forms of a test 14
2.2.4 Test environment and equipment 14
2.3 FACTORS AFFECTING METHODOLOGICAL VARIABILITY 15
2.3.1 Stimulus familiarity 15
2.3.2 Phonetic balance and phonemic balance 16
2.3.3 Use of half- versus full-lists 16
2.3.4 Use of carrier phrase 18
2.3.5 Presentation format of test materials 18
2.3.6 Presentation level 19
2.4 RELIABILITY AND VALIDITY 19
2.4.1 Reliability 20
2.4.2 Validity 22
2.5 BINOMIAL CHARACTERISTICS OF SPEECH RECOGNITION 24
CHAPTER 3 ANALYSIS OF MANDARIN MONOSYLLABLES 28
3.1 CHARACTERISTICS OF THE SINICA CORPUS 28
3.2 PHONEMIC DISTRIBUTION OF THE WORD LISTS 29
3.3 PSYCHOMETRIC DATA OF TEST MATERIALS 35
3.4 METHOD 36
3.4.1 Familiar monosyllables 36
3.4.2 Preparation of test materials 36
3.4.3 Subjects 37
3.4.4 Procedure 38
3.4.5 Psychometric function and characteristics 39
3.5 RESULTS 39
3.6 DISCUSSIONS 40
CHAPTER 4 APPLY GENETIC ALGORITHM TO CONSTRUCT WORD LISTS 45
4.1 INTRODUCTION 45
4.2 OPTIMIZATION ABSTRACTION 46
4.3 GENETIC ALGORITHM 48
4.3.1 Population presentation and initialization 50
4.3.2 Measurement of fitness 51
4.3.3 Selection 52
4.3.4 Crossover operator 52
4.3.5 Mutation operator 55
4.3.6 Reinsertion 55
4.3.7 Termination of the genetic algorithm 56
4.4 METHOD 56
4.4.1 Experimental environment 56
4.4.2 Experimental settings 57
4.5 RESULTS AND DISCUSSIONS 58
4.5.1 Convergence 58
4.5.2 Efficiency 59
4.5.3 Repeated items in word lists 61
4.5.4 Factors affecting the genetic algorithm 62
4.5.5 Comparisons of monosyllabic and bisyllabic word lists 63
CHAPTER 5 DEVELOPMENT OF A MANDARIN MONOSYLLABLE RECOGNITION TEST 68
5.1 SELECTION OF HOMOGENEOUS MATERIAL 68
5.1.1 Method 68
5.1.2 Results 69
5.2 CONSTRUCTION OF THE WORD LISTS 71
5.2.1 Method 71
5.2.2 Results 72
5.3 DISCUSSIONS 79
CHAPTER 6 RELIABILITY OF THE MANDARIN MONOSYLLABLE RECOGNITION TEST 84
6.1 INTRODUCTION 84
6.2 METHOD 86
6.2.1 Subjects 86
6.2.2 Instrument 87
6.2.3 Procedure 87
6.2.4 Statistics analysis 88
6.3 RESULTS AND DISCUSSIONS 89
6.3.1 Test-retest reliability 89
6.3.2 Interlist reliability 91
6.3.3 Split-half reliability 95
6.3.4 General discussions 96
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 99
7.1 CONCLUSIONS 99
7.2 RECOMMENDATIONS FOR FUTURE RESEARCH 100
7.2.1 Mandarin monosyllable recognition test in noise 100
7.2.2 Diagnosis of cochlear and retrocochlear hearing loss 101
7.2.3 Word lists with different recognition difficulties 103
7.2.4 Adaptability of word recognition test 105
REFERENCE 107
1. ANSI (1987). American national standard specification for instruments to measure aural acoustic impedance and admittance. American National Standards Institute S3.39-1987.
2. ANSI (2003). Maximum permissible ambient noise levels for audiometric test rooms. American National Standards Institute S3.1-1999 (R2003).
3. ANSI (2004). Specification of Audiometers. American National Standards Institute S3.6-1996 (R2004).
4. Asher, J. W. (1958). "Intelligibility tests: a review of their standardization, some experiments, and a new test." Speech Monographs 25: 14-28.
5. Beattie, R. C., B. J. Edgerton, et al. (1977). "A comparison of the Auditec of St. Louis cassette recordings of NU-6 and CID W-22 on a normal-hearing population." Journal of Speech and Hearing Disorders 42: 60-64.
6. Beattie, R. C., S. A. Svihovec, et al. (1978). "Comparison of speech detection and spondee thresholds for half- versus full-list intelligibility scores with MLV and taped presentations of NU-6." Journal of the American Audiology Society 3: 267-272.
7. Bess, F. H. (1983). Clinical assessment of speech recognition. Principles of speech audiometry. D. F. Konkle and W. F. Rintelmann. Baltimore, MD, University Park Press: 127-202.
8. Bess, F. H. and L. E. Humes (2003). Audiology: the fundamentals, Lippincott Williams and Wilkins.
9. Bilger, R. C., J. M. Nuetzel, et al. (1984). "Standardization of a test of speech perception in noise." Journal of Speech, Language, and Hearing Research 27: 32-48.
10. Black, J. W. (1952). "Accompaniments of word intelligibility." Journal of Speech and Hearing Disorders 17: 409-418.
11. Black, J. W. (1957). "Multiple-choice intelligibility tests." Journal of Speech and Hearing Disorders 22: 213-235.
12. Boothroyd, A. (1968). "Developments in speech audiometry." Sound 2(1): 3-10.
13. Brandy, W. T. (2002). Speech audiometry. Handbook of clinical audiology. J. Katz. Baltimore, Maryland 21201-2436 USA, Lippincott Williams & Wilkins 5th edition: 96-110.
14. Cambron, N. K., R. H. Wilson, et al. (1991). "Spondaic word detection and recognition functions for female and male speakers." Ear and Hearing 12(1): 64-70.
15. Campanelli, P. A. (1962). "A measure of intra-list stability of four PAL word lists." Journal of Auditory Research 2: 50-55.
16. Carhart, R. (1951). "Basic principles of speech audiometry." Acta Oto-laryngologica 40: 62-71.
17. Carhart, R. (1965). "Problems in the measurement of speech discrimination." Archives of Otolaryngology 82(9): 253-260.
18. Causey, G. D., C. L. Hermanson, et al. (1983). "A comparative evaluation of the Maryland NU 6 auditory test." Journal of Speech and Hearing Disorders 48(1): 62-69.
19. Cohen, R. L. and R. W. Keith (1976). "Use of low-pass noise in word recognition." Journal of Speech and Hearing Disorders 19: 48-54.
20. Cooper, J. C. and B. P. Cutts (1971). "Speech discrimination in noise." Journal of Speech and Hearing Research 14: 332-337.
21. Cox, R. M., G. C. Alexander, et al. (1987). "Development of the Connected Speech Test (CST)." Ear and Hearing 8: 119S-126S.
22. Creston, J. E., M. Gillespie, et al. (1966). "Speech audiometry: Taped vs. live voice." Archives of Otolaryngology 83: 14-17.
23. Danhauer, J. L., L. E. Lucks, et al. (1986). "Survey of speech perception assessment materials used by cochlear implant centers." Journal of Auditory Research 26: 75-87.
24. Dirks, D. D., C. Kamm, et al. (1977). "Use of performance-intensity functions for diagnosis." Journal of Speech and Hearing Disorders 42: 408-415.
25. Dowell, R. C., S. J. Dettman, et al. (2002). "Speech perception outcomes in older children who use multichannel cochlear implants: Older is not always poorer." Annals of Otology, Rhinology & Laryngology. Supplement 189: 97-101.
26. Edgerton, B. J. and J. L. Danhauer (1979). Clinical implications of speech discrimination testing using nonsense stimuli. Baltimore, University Park Press.
27. Egan, J. J. (1979). "Basic aspects of speech audiometry." Ear, Nose, & Throat Journal 58: 190-193.
28. Egan, J. P. (1948). "Articulation testing methods." Laryngoscope 58: 955-991.
29. Elpern, B. S. (1961). "The relative stability of half-list and full-list discrimination tests." Laryngoscope 71: 30-36.
30. Engelberg, M. (1968). "Test-retest variability in speech discrimination testing." Laryngoscope 78: 1582-1589.
31. Findlay, R. C. (1976). "Auditory dysfunction accompanying noise-induced hearing loss." Journal of Speech and Hearing Research 14: 374-380.
32. Fletcher, H. and J. C. Steinberg (1929). "Articulation testing methods." Bell System Techinical Journal 8: 806-854.
33. Gelfand, S. A. (1998). "Optimizing the Reliability of Speech Recognition Scores." Journal of Speech, Language, and Hearing Research 41: 1088-1102.
34. Gen, M. and R. Cheng (1999). Foundations of genetic algorithms. Genetic algorithms and engineering optimization. M. Gen and R. Cheng, Wiley-Interscience: 1-14.
35. Gladstone, V. S. and B. M. Siegenthaler (1971). "Carrier phrase and speech intelligibility score." Journal of Auditory Research 11: 101-103.
36. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Professional.
37. Grubb, P. (1963). "A phonemic analysis of half-list speech discrimination tests." Journal of Speech and Hearing Research 10: 271-276.
38. Grubb, P. (1963). "Some considerations in the use of half-list speech discrimination tests." Journal of Speech and Hearing Research 6: 291-297.
39. Hagerman, B. (1976). "Reliability in the determination of speech discrimination." Scandinavian Audiology 5(4): 219-228.
40. Hagerman, B. (1984). "Some aspects of methodology in speech audiometry." Scandinavian Audiology. Supplement 21: 1-25.
41. Hirsh, I. J., H. Davis, et al. (1952). "Development of materials for speech audiometry." Journal of Speech and Hearing Disorders 17: 321-337.
42. Holland, J. H. (1975). Adaptation in natural and artificial systems: an introduction analysis with applications to biology, control, and artificial intelligence algorithms in search, optimization, and machine learning. Ann Arbor, MI, USA, University of Michigan.
43. Howes, D. (1957). "On the relationship between the intelligibility and frequency of occurrence of English words." Journal of the Acoustical Society of America 29: 296-305.
44. Hsu, H.-L. and C.-R. Huang (1995). Design criteria for a balanced modern Chinese corpus. ICCPOL'95, Hawaii.
45. Huang, C.-R. and K.-J. Chen (1998). Academia Sinica Balanced Corpus of Modern Chinese, version 3.1, Institute of Linguistics of Academia Sinica (Taipei, Taiwan).
46. Huang, C.-R., K.-J. Chen, et al. (1997). "Segmentation standard for Chinese natural language processing." International Journal of Computational Linguistics and Chinese Language Processing 2: 47-62.
47. Hudgins, C. V., J. E. Hawkins, et al. (1947). "The development of recorded auditory tests for measuring hearing loss for speech." Laryngoscope 57: 57-89.
48. Hughson, W. and E. A. Thompson (1942). "Correlation of hearing acuity for speech with discrete frequency audiograms." Archives of Otolaryngology 36: 526-540.
49. Hurley, R. M. and J. P. Sells (2003). "An abbreviated word recognition protocol based on item difficulty." Ear and Hearing 24(2): 111-118.
50. Jerger, J. and S. Jerger (1971). "Diagnostic significance of PB word functions." Archives of Otolaryngology 93: 573-580.
51. Jerger, J., C. Speaks, et al. (1968). "A new apporach to speech audiometry." Journal of Speech and Hearing Disorders 33: 318-328.
52. Jerger, S., J. Jerger, et al. (1983). "Speech audiometry in the young child." Ear and Hearing 4: 56-66.
53. Jirsa, R. E., W. R. Hodgson, et al. (1975). "Unreliability of half-list discrimination tests." Journal of the American Audiology Society 1(2): 47-49.
54. Kalikow, D. N., K. N. Stevens, et al. (1977). "Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability." Journal of the Acoustical Society of America 61(5): 1337-1351.
55. Kreul, E. J., D. W. Bell, et al. (1969). "Factors affecting speech discrimination test difficulty." Journal of Speech and Hearing Research 12(2): 281-287.
56. Kruger, B. and F. M. Kruger (1997). Speech audiometry in the USA. Speech audiometry, 2nd edn. M. Martin. London, England, Whurr: 233-277.
57. Lahiste, I. and G. E. Peterson (1959). "Linguistic considerations in the study of speech intelligibility." Journal of the Acoustical Society of America 31: 280-286.
58. Lau, C. C. and K. W. So (1988). "Material for Cantonese speech audiometry constructed by appropriate phonetic principles." British Journal of Audiology 22(4): 297-304.
59. Lehiste, I. and G. E. Peterson (1959). "Linguistic considerations in the study of speech intelligibility." Journal of the Acoustical Society of America 31: 280-286.
60. Li, P.-C., Y.-Y. Chiang, et al. (2005). "Genetic algorithm for the efficient selection of disyllabic word lists used in Mandarin speech discrimination tests." Medical & Biological Engineering & Computing 43(5): 648-657.
61. Loven, F. C. and D. B. Hawkins (1983). "Interlist equivalency of the CID W-22 word lists presented in quiet and in noise." Ear and Hearing 4(2): 91-97.
62. Lynn, J. M. and S. R. Brotman (1981). "Perceptual significance of the CID W-22 carrier phrase." Ear and Hearing 2(3): 95-99.
63. Lyregaard, P. (1998). Towards a theory of speech audiometry tests. Speech audiometry, 2nd edn. M. Martin. London, England, Whurr: 34-62.
64. Martin, F. N., T. W. Armstrong, et al. (1994). "A survey of audiological practices in the United States." American Journal of Audiology 3(2): 20-26.
65. Martin, F. N., R. R. Hawkins, et al. (1962). "The non-essentiality of the carrier phrase in phonetically-ballanced (PB) word testing." Journal of Auditory Research 2: 319-322.
66. Martin, F. N. and C. D. Pennington (1971). "Current trends in audiometric practices." ASHA 13(11): 671-677.
67. McNemar, Q. (1969). Psychological Statistics. New York, John Wiley.
68. Mendel, L. L. and J. L. Danhauer (1997). Audiologic evaluation and management: speech perception assessment, Singular.
69. Mendel, L. L. and J. L. Danhauer (1997). Test administration and interpretation. Audiologic evaluation and management and speech perception assessment. L. L. Mendel and J. L. Danhauer. San Diego, California, Singular Publishing Group, Inc.: 15-30.
70. Nissen, S. L., R. W. Harris, et al. (2008). "Word recognition materials for native speakers of Taiwan Mandarin." American Journal of Audiology 17(1): 68-79.
71. Nissen, S. L., R. W. Harris, et al. (2005). "Psychometrically equivalent Mandarin bisyllabic speech discrimination materials spoken by male and female talkers." International Journal of Audiology 44(7): 379-90.
72. Nissen, S. L., R. W. Harris, et al. (2005). "Psychometrically equivalent trisyllabic words for speech reception threshold testing in Mandarin." International Journal of Audiology 44(7): 391-9.
73. Northern, J. L. and K. W. Hattler (1974). "Evaluation of four speech discrimination test procedures on hearing-impaired patiences." Journal of Auditory Research (Suppl): 1-37.
74. Nunnally, J. C. (1978). Psychometric theory. New York, McGraw-Hill Co.
75. Olsen, W. and N. Matkin (1979). Speech audiometry. Hearing assessment. W. F. Rintelmann, University Park Press.
76. Olsen, W. O. and N. D. Markin (1991). Speech audiometry. Hearing assessment. W. F. Rintelmann. Austin, TX, Pro-Ed: 99-140.
77. Owens, E. (1961). "Intelligibility of words varying in familiarity." Journal of Speech and Hearing Research 4: 113-129.
78. Penrod, J. P. (1980). "A comparison of half- vs full-list speech discrimination scores in a hearing-impaired geriatric population." Journal of Auditory Research 20(3): 181-186.
79. Peterson, G. E. and I. Lehiste (1962). "Revised CNC lists for auditory tests." Journal of Speech and Hearing Disorders 27: 62-70.
80. Pollack, I., H. Rubenstein, et al. (1959). "Intelligibility of known and unknown messages sets." Journal of the Acoustical Society of America 31: 273-279.
81. Raffin, M. J. M. and D. Schafer (1980). "Application of a probability model based on the binomial distribution to speech-discrimination scores." Journal of Speech and Hearing Research 23: 570-575.
82. Raffin, M. J. M. and A. R. Thornton (1980). "Confidence levels for differences between speech discrimination scores." Journal of Speech and Hearing Research 23: 5-18.
83. Resnick, D. M. (1962). "Reliability of the 25 word phonetically balanced lists." Journal of Auditory Research 2(1): 5-12.
84. Rintelmann, W. F., D. R. Schumaier, et al. (1974). "Six experiments on speech discriminiation utilizing CNC monosyllabic words (Northwestern University Auditory Test No. 6)." Journal of Auditory Research 2(Suppl): 1-30.
85. Sarant, J. Z., P. J. Blamey, et al. (2001). "Variation in speech perception scores among children with cochlear implants." Ear and Hearing 22: 18-28.
86. Savin, H. B. (1963). "Word-frequency effects and errors in the perception of speech." Journal of the Acoustical Society of America 35(2): 200-206.
87. Schultz, M. C. (1964). "Word familiarity influence in speech discrimination." Journal of Speech and Hearing Research 7: 395-400.
88. Shutts, R., K. Burke, et al. (1964). "Derivation of 25 word phonetically-balanced lists." Journal of Speech and Hearing Disorders 29: 442-447.
89. Silverman, S. R. and I. J. Hirsh (1955). "Problems related to the use of speech in clinical audiometry." Annals of Otology, Rhinology and Laryngology 64(4): 1234-1244.
90. Stockley, K. B. and W. B. Green (2000). "Interlist equivalency of the Northwestern University Auditory Test No. 6 in quiet and noise with adult hearing-impaired individuals." Journal of the American Academy of Audiology 11(2): 91-96.
91. Stuart, A. (2004). "An investigation of list equivalency of the Northwestern University auditory test No. 6 in interrupted broadband noise." American Journal of Audiology 13(1): 23-28.
92. Stuart, A., W. B. Green, et al. (1994). "List equivalency of the Northwestern University Auditory Test No. 6 in quiet and in continuous broad band noise." Journal of Speech-Language Pathology and Audiology 18: 121-125.
93. Thornton, A. R. and M. J. Raffin (1978). "Speech discrimination scores modeled as a binomial variable." Journal of Speech and Hearing Research 21(3): 507-518.
94. Tillman, T. W. and R. Carhart (1966). An expanded test for speech discrimination utilizing CNC monosyllabic words. Northwestern University Auditory Test No, 6. USAF School of Aerospace Medicine Techinical Report. TX, Brooks Air Force Base.
95. Tobias, J. V. (1964). "On phonemic analysis of speech discrimination." Journal of Speech and Hearing Research 7: 98-100.
96. Tsai, K.-S., L.-H. Tseng, et al. (2009). "Development of a Mandarin Monosyllable Recognition Test." Ear and Hearing 30(1): 90-99.
97. Wang, L.-T. and F.-M. Su (1979). "Development of phonemically balanced monosyllabic Mandarin word lists." Journal of the Oto-laryngological Society of the Republic of China 14: 1-9.
98. Wilber, L. A. (2001). Calibration: puretone, speech, and noise signals. Handbook of clinical audiology. J. Katz, Lippincott Williams and Wilkins: 50-70.
99. Wilson, R. H. and A. S. Carter (2001). "Relation between slopes of word recognition psychometric functions and homogeneity of the stimulus materials." Journal of the American Academy of Audiology 12(1): 7-14.
100. Wilson, R. H., K. E. Coley, et al. (1976). "Northwestern University Auditory Test No. 6: normative and comparative intelligibility functions." Journal of the American Audiology Society 1(5): 221-8.
101. Wilson, R. H. and A. L. Oyler (1997). "Psychometric functions for the CID W-22 and NU Auditory Test No. 6. Materials spoken by the same speaker." Ear and Hearing 18(5): 430-3.
102. Wilson, R. H. and A. L. Strouse (1999). Auditory measures with speech signals. Contemporary perspectives in hearing assessment. F. E. Musiek and W. F. Rintelmann. Needham Height, MA, USA, Allyn & Bacon: 21-66.
103. 王老得 and 張蓓莉 (1981). "中國語音均衡字彙表臨床應用之檢討." 中華民國耳鼻喉科醫學會雜誌 16(1): 9-20.
104. 王老得 and 蘇富美 (1979). "中國語音均衡字彙表之編製研究." 中華民國耳鼻喉科醫學會雜誌 14(2): 7-16.
105. 利文鳳 (1998). 學齡前兒童國語語音閾測驗之編製. 特殊教育學系. 高雄, 國立高雄師範大學. 碩士: 91.
106. 李宗伊 (1984). "中文語詞聽閾鑑定題材的發展." 中華醫學會雜誌 32: 282-288.
107. 林永松, 李正順, et al. (1994). "台語語詞聽閾檢定的編制." 中華民國耳鼻喉科醫學會雜誌 29(6): 457-462.
108. 林永松, 張簡培崙, et al. (1996). "中文揚揚格語詞聽閾檢定表." 中華民國耳鼻喉科醫學會雜誌 32(1): 7-12.
109. 陳小娟 (1999). "三至八歲聽障兒童語音聽知覺之研究." 特殊教育復健學報 7: 51-78.
110. 楊秀春 (2002). 國語聲母聽辨測驗之編製研究. 特殊教育學系. 高雄, 國立高雄師範大學 碩士: 126.
111. 蘇義彬 (1962). "語音聽力檢查法之研究-檢查用語之選定." 台灣醫學會雜誌 61(1): 94-104.