:
twitter line
研究生: 朱俊麟
研究生(外文): ZHU, JUN-LIN
論文名稱: 具有均流控制之1MHz全橋諧振轉換器的研製
論文名稱(外文): Design and Implementation of 1 MHz Full-Bridge Resonant Converter with Current Sharing
指導教授: 賴炎生
指導教授(外文): LAI, YEN-SHIN
口試委員: 賴炎生 顧明輝 蕭永鴻
口試委員(外文): LAI, YEN-SHIN GU, MING-HUEI SHIAU, YUNG-HUNG
口試日期: 2022-01-07
學位類別: 碩士
校院名稱: 國立臺北科技大學
系所名稱: 電機工程系
學門: 工程學門
學類: 電資工程學類
論文種類: 學術論文
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 104
中文關鍵詞: 均流控制 氮化鎵金氧半場效電晶體 全橋諧振轉換器
外文關鍵詞: Current-sharing control Gallium-nitride MOSFET Full-bridge resonant converter
相關次數:
  • 被引用 被引用: 3
  • 點閱 點閱:233
  • 評分 評分:
  • 下載 下載:0
  • 收藏至我的研究室書目清單 書目收藏:0
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與本文貢獻 12
1.3 內容大綱 14
第二章 全橋LLC諧振轉換器原理與設計 15
2.1 全橋LLC諧振轉換器簡介 15
2.2 全橋LLC諧振轉換器動作原理 20
第三章 全橋LLC諧振轉換器數位化控制設計 33
3.1 控制策略簡介 33
3.1.1 單電壓控制策略分析 34
3.1.2 均流控制策略分析 35
3.2 控制器參數設計 36
第四章 全橋LLC諧振轉換器電路模擬 44
4.1 單相全橋LLC諧振轉換器之電路模擬 44
4.2 兩相全橋LLC諧振轉換器之電路模擬 50
4.2.1 單電壓控制電路模擬 52
4.2.2 均流控制電路模擬 54
第五章 全橋LLC諧振轉換器實驗結果 60
5.1 全橋LLC諧振轉換器之實測平台 60
5.2 單相全橋LLC諧振轉換器之電路實測 64
5.3 兩相全橋LLC諧振轉換器之電路實測 72
5.3.1 單電壓控制電路實測 73
5.3.2 均流控制電路實測 77
5.3.3 電流回授方式改良實測 83
第六章 結論與未來展望 92
6.1 結論 92
6.2 未來展望 92
參考文獻 93
附錄A 輸出電容寄生參數量測 97
附錄B 擾動量設定及觀測待測波形 98
附錄C 回授電流損失分析 100
符號彙編 102
[1]C. Fei, R. Gadelrab, Q. Li, and F. C. Lee, “High-frequency three-phase interleaved LLC resonant converter with GaN devices and integrated planar magnetics,” IEEE Trans. Power Electron., vol. 7, no. 2, pp. 653-663, Jan. 2019.
[2]S. Jiang and X. Li, “Google 48V power architecture,” IEEE Appl. Power Electron. Conf. (APEC), Tampa, FL, USA, Mar. 2017.
[3]M. H. Ahmed, C. Fei, F. C. Lee, and Q. Li, “48-V voltage regulator module with PCB winding matrix transformer for future data centers,” IEEE Trans. Ind. Electron., vol. 64, no. 12, pp. 9302-9310, Dec. 2017.
[4]B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, USA, pp. 1108-1112, 2002.
[5]Application Note, “Primary Side MOSFET Selection for LLC Topology,” Infineon Technologies, 2014.
[6]H. Wu, T. Mu, X. Gao, and Y. Xing, “A secondary-side phase-shift controlled LLC resonant converter with reduced conduction loss at normal operation for hold-up time compensation application,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5352–5357, Oct. 2015.
[7]H. Wang, Y. Chen, P. Fang, Y. Liu, J. Afsharian, and Z. Yang, “An LLC converter family with auxiliary switch for hold-up mode operation,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4291–4306, Jun. 2017.
[8]C. Kim, J. Baek, and J. Lee, “High-efficiency single-stage LLC resonant converter for wide-input-voltage range,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7832–7840, Sep. 2018.
[9]J. X. Liu and L. Yushyna, “High Frequency Investigation of Wide Bandgap-based PFC and LLC Converters in PSU,” International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. VDE, Jul. 2020.
[10]Datasheet, IXFT60N65X2HV, IXYS Corporation, 2016.
[11]Datasheet, UF3SC065030B7S, United Silicon Carbide Inc., 2020.
[12]Datasheet, GS66516B-MR, GaN Systems Inc., 2020.
[13]E. Orietti, P. Mattavelli, G. Spiazzi, C. Adragna, and G. Gattavari, “Two phase interleaved LLC resonant converter with current-controlled inductor,” in Proc. Brazilian Power Electron., 2009, pp. 298–304.
[14]Z. Hu, Y. Qiu, Y. F. Liu, and P. C. Sen, “A control strategy and design method for interleaved LLC converters operating at variable switching frequency,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4426–4437, Aug. 2014.
[15]H. Chen, X. Wu, and S. Shao, “A current sharing method for interleaved high frequency LLC converter with partial energy processing,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1498–1507, Feb. 2020.
[16]Y. Yang, J. Yao, H. Li, and J. Zhao, “A novel current sharing method by grouping transformer’s secondary windings for a multiphase LLC resonant converter,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4877–4890, May 2020.
[17]M. Sato, R. Takiguchi, J. Imaoka, and M. Shoyama, “A novel secondary PWM-controlled interleaved LLC resonant converter for load current sharing,” in Proc. IEEE 8th Int. Power Electron. Motion Control Conf. (IPEMC-ECCE Asia), 2016, pp. 1–5.
[18]R. Mirzahosseini and F. Tahami, “A phase-shift three-phase bidirectional series resonant dc/dc converter,” in Proc. of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, 2011, pp. 1137–1143.
[19]Y. Jang, M. M. Jovanović, J. M. Ruiz, M. Kumar, and G. Liu, “A novel active-current-sharing method for interleaved resonant converters”, in Proc. IEEE APEC, 2015, pp. 1461-1466
[20]J. Y. Lin, K. H. Chen, P. H. Liu, H. Y. Yueh, and Y. F. Lin, “Current Sharing Control of an Interleaved Three-Phase Series-Resonant Converter with Phase Shift Modulation”, Energies, 14(9), 2470., Mar. 2021.
[21]游閔翔,具有均流控制之全數位諧振轉換器並聯系統的研製,國立台北科技大學電機工程系碩士論文,2013年。
[22]張之安,具有均流控制之全數位多相輸出之直流轉換器研製,國立台北科技大學電機工程系碩士論文,2009年。
[23]PSIM 12.0.2, [online] Available : https://powersimtech.com/products/psim
[24]張雲程,CLLC諧振轉換器效率提升之控制技術,國立台北科技大學電機工程系 碩士論文,2020年。
[25]C. C. Wang, Y. C. Chang, Y. K. Lo, and H. J. Chiu, “Efficiency improvement in adjustable dead time of LLC resonant converters,” in Proc. IGBSG. Conf., 2014, pp. 1-4
[26]S. C. Moon, C. S. Chen, and R. J. Wang, “A new dead time regulation synchronous rectification control method for high efficiency LLC resonant converters,” IEEE Trans. on. Power Electron., vol. 36, no. 9, pp. 10673-10683, Sep. 2021.
[27]C. Fei, Q. Li, and F. C. Lee, “Digital implementation of adaptive synchronous rectifier (SR) driving scheme for high-frequency LLC converters with microcontroller,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5351–5361, Jun. 2018.
[28]F. Wang, B. A. McDonald, J. Langham, and B. Fan, “A novel adaptive synchronous rectification method for digitally controlled LLC converters,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2016, pp. 334–338.
[29]游閔翔,雙級伺服器電源效率提升之控制技術,國立台北科技大學電機工程系博士論文,2018年。
[30]Datasheet, Multilayer Ceramic Chip Capacitors series - CGA6P1X7R1N106M250AC, TDK Corporation, 2020.
[31]Datasheet, Aluminum Electrolytic Capacitors UHE series - UHE1J271MHD, Nichicon Corporation, 2015.
[32]Datasheet, ACS724KMA, Allegro, 2016.
[33]Datasheet, DMR51 – EF16, DMEGC, 2017.