Planetary nebulae can be classified into round, elliptical, bipolar, and irregular. We are especially interested in bipolar planetary nebula. It is conceivable that the stellar wind from the star should be spherical. However, from observations the morphology of most planetary nebulae is bipolar not spherical. There are two main reasons for planetary nebula to have bipolar structure: one is binary system, and the other is magnetic field. We would like to understand the formation of bipolar planetary nebula, and we use numerical simulation for our study. We choose the magnetohydrodynamic simulation code FLASH as our main tool. In this thesis, we focus on binary system as the major cause of bipolar structure in planetary nebula (in particular in proto-planetary nebula). We assume that at the end of stellar evolution, the interaction of the stellar wind from the star with the companion star would form a torus around the star. The torus impedes outflow in the equatorial direction. Thus subsequent stellar wind prefers polar direction. As a result, bipolar planetary nebula (proto-planetary nebula) is formed.
Our model involves a gas torus surrounding the central star. The star pulsate periodically and stellar wind bursts at each pulsation. The whole system is embedded in a low density uniform interstellar medium. We study the interaction of the stellar wind with the torus using numerical simulations, and examine the proposition that torus in the binary system is the cause of bipolar (proto-)planetary nebula.
From our simulation result, the gas torus is able to impede the stellar wind, and the shape of the (proto-)planetary nebula is bipolar. We also investigate the effect of the density of the gas torus on the result. As expected, when the density of the tours is lower, it becomes more difficult to hinder the stellar wind, and it may be totally disrupted if its density is low enough. With these simulations, we successfully confirm that gas torus can be one of the main reasons for the formation of bipolar morphology of (proto-)planetary nebulae.
中文摘要 iii
英文摘要 iv
致謝 v
圖片列表 vii
表格列表 vii
一、 序論 1
1-1 行星狀星雲的演化 1
1-2 行星狀星雲的分類 2
1-3 長條狀行星狀星雲與雙星系統 3
二、 模擬程式與行星狀星雲模型 5
2-1 模擬程式:FLASH 5
2-2 行星狀星雲模型 6
2-2-1 甜甜圈模型(Torus) 8
2-2-2 AGB星及質量流失率 10
2-3 邊界條件 10
2-4 單位 11
三、 模擬測試 12
3-1. 恆星 12
3-2. 甜甜圈模型(Torus) 13
3-3. 解析度 14
3-4. 質量流失率(Mass-loss rate) 17
3-5. 模擬區域切半 18
3-6. 星際介質(Interstellar Medium,ISM)密度 20
四、 結果與討論 22
4-1. 環的影響 22
4-2. 比較甜甜圈模型的密度 25
4-3. 和模擬結果與觀測比較 31
五、 結論 34
六、 參考文獻 36
Akashi, M., Sabach, E., Yogev, O., and Soker, N. (2015). Forming equatorial rings around dying stars. Monthly Notices of the Royal Astronomical Society 453, 2115-2125.
Akashi, M., and Soker, N. (2008). Shaping planetary nebulae by light jets. Monthly Notices of the Royal Astronomical Society 391, 1063-1074.
Akashi, M., and Soker, N. (2013). Impulsive ejection of gas in bipolar planetary nebulae. Monthly Notices of the Royal Astronomical Society 436, 1961-1967.
Akashi, M., and Soker, N. (2016). Bipolar rings from jet-inflated bubbles around evolved binary stars. Monthly Notices of the Royal Astronomical Society 462, 206-216.
Akashi, M., and Soker, N. (2017). Shaping planetary nebulae with jets in inclined triple stellar systems. Monthly Notices of the Royal Astronomical Society 469, 3296-3306.
Balick, B. (1987). The evolution of planetary nebulae. I-Structures, ionizations, and morphological sequences. The Astronomical Journal 94, 671-678.
Balick, B., and Frank, A. (2002). Shapes and Shaping of Planetary Nebulae. Annual Review of Astronomy and Astrophysics 40, 439-486.
Chen, Z., Frank, A., Blackman, E. G., Nordhaus, J., and Carroll-Nellenback, J. (2017). Mass transfer and disc formation in AGB binary systems. Monthly Notices of the Royal Astronomical Society 468, 4465-4477.
Chen, Z., Nordhaus, J., Frank, A., Blackman, E. G., and Balick, B. (2016). Three-dimensional hydrodynamic simulations of L 2 Puppis. Monthly Notices of the Royal Astronomical Society 460, 4182-4187.
Curtis, H. D. (1918). The planetary nebulae. Publications of Lick Observatory 13, 55-74.
Ferrière, K. M. (2001). The interstellar environment of our galaxy. Reviews of Modern Physics 73, 1031-1066.
Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P., Rosner, R., Truran, J. W., and Tufo, H. (2000). FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The Astrophysical Journal Supplement Series 131, 273-334.
Garcia-Segura, G. (1997). Three-Dimensional Magnetohydrodynamical Modeling of Planetary Nebulae: The Formation of Jets, Ansae, and Point-Symmetric Nebulae via Magnetic Collimation. The Astrophysical Journal 489, L189-L192.
Garcia-segura, G., Langer, N., Rozyczka, M., and Franco, J. (1999). Shaping bipolar and elliptical planetary nebula: effects of stellar rotation, photoionzation heating, and magnetic fields.
Hsia, C. H., Ip, W. H., Li, J. Z., and (2006). Evidence for a Binary Origin of the Young Planetary Nebula Hubble 12. The Astronomical Journal 131, 3040-3046.
Hsia, C. H., Kwok, S., Zhang, Y., Koning, N., and Volk, K. (2010). An optical-infrard study of young multipolar planetary nebula NGC 6644. The Astrophysical Journal 725, 173-183.
Huarte-Espinosa, M., Frank, A., Balick, B., Blackman, E. G., De Marco, O., Kastner, J. H., and Sahai, R. (2012). From bipolar to elliptical: simulating the morphological evolution of planetary nebulae. Monthly Notices of the Royal Astronomical Society 424, 2055-2068.
Iben, I., and Renzini, A. (1983). Asymptotic giant branch evolution and beyond. Annual review of Astronomy and Astrophysics 21, 271-342.
Kwok, S. (1982). From red giants to planetary nebulae. The Astrophysical Journal 258, 280-288.
Kwok, S. (1993). Proto-planetary nebulae. Annual review of astronomy and astrophysics 31, 63-92.
Kwok, S. (2007). "The origin and evolution of planetary nebulae," Cambridge University Press.
Kwok, S., Chong, S.-N., Hsia, C.-H., Zhang, Y., and Koning, N. (2009). Discovery of a multipolar structure with an equatorial disk in NGC 6072. The Astrophysical Journal 708, 93-100.
Kwok, S., Chong, S.-N., Koning, N., Hua, T., and Yan, C.-H. (2008). The true shapes of the Dumbbell and the Ring. The Astrophysical Journal 689, 219.
Molnár, L., Joyce, M., and Kiss, L. L. (2019b). Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris. The Astrophysical Journal 879, 62.
Soker, N. (2005). Can We Ignore Magnetic Fields in Studies of PN Formation, Shaping and Interaction with the ISM? In "AIP Conference Proceedings", pp. 89-94.
Tasker, E. J., Brunino, R., Mitchell, N. L., Michielsen, D., Hopton, S., Pearce, F. R., Bryan, G. L., and Theuns, T. (2008). A test suite for quantitative comparison of hydrodynamic codes in astrophysics. Monthly Notices of the Royal Astronomical Society 390, 1267-1281.
Tsui, K. (2008). Magnetohydrodynamic model of equatorial plasma torus in planetary nebulae. Astronomy & Astrophysics 482, 793-802.