1. 緒論1
2. 文獻回顧與研究方法3
2.1. 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. 參數的估計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. 新的參數估計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3. 變異數估計14
4. 模擬與實例的研究分析21
4.1. 電腦模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2. 實例模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5. 結論25
6. 參考文獻27
A 附錄28
ii
[1] Chao, A. 1987. Estimating the population size for capture-recapture data
with unequal catchability. Biometircs, 43, 783 ???? 791.
[2] Chao, A. 1989. Estimating population size for sparse data in capturerecapture
experiment.Biometircs, 45, 427 ???? 438.
[3] He, H., Tang, W., Wang, W.J., and Paul, C.-C. 2014. Structural zeroes
and zero-inflated models. Shanghai archives of psychiatry, 26(4), 236.
[4] Lambert, D. 1992. Zero-inflated Poisson regression, with an application to
defects in manufacturing. Technometrzcs, 34, 1 ???? 14.
[5] Shankar, V., Milton, J., Mannering, F.L., 1997. Modeling accident frequency
as zeroaltered probability processes: an empirical inquiry. Accident
Analysis and Prevention, 29(6), 829 ???? 837.
[6] Pielou, E. C. 1977. Mathematical ecology. John Wiley, New York, New
York, USA.
[7] Yau, K. K., Wang, K., and Lee, A. H. 2003. Zero-Inflated Negative Binomial
Mixed Regression Modeling of Over-Dispersed Count Data with Extra
Zeros. Biometrical Journal, 45(4), 437 ???? 452.
[8] 葉懿慧, 2014. 零膨脹負二項模式下之族群消失率估計的模擬研究. 碩士論
文, 國立中興大學統計學研究所.
[9] 孫義方, 2006. 森林生態學研究的新潮流– 森林動態樣區. 林業研究專訊.