日常编程工作中,Java集合会经常被使用到,且经常需要对集合做一些类似过滤、排序、对象转换之类的操作。
为了简化这类操作,Java8添加了一套新的Stream API,使用方式就像写SQL一样,大大简化了这类处理的实现代码量与可读性。
比如,我们要查询双11期间交易额最大的10笔订单的用户信息,用SQL实现的话,大致如下:
select user_id, user_name
from order
where pay_time >= '2022-11-01' and pay_time < '2022-12-01'
order by goods_amount desc
limit 10;
这种处理逻辑,不用Stream API,实现代码大致如下:
public static List<User> getTop10Users() throws ParseException {
List<Order> orders = getOrders();
// 过滤出双11订单
List<Order> filteredOrders = new ArrayList<>();
long begin = DateUtils.parseDate("2022-11-01", "yyyy-MM-dd").getTime();
long end = DateUtils.parseDate("2022-12-01", "yyyy-MM-dd").getTime();
for (Order order : orders) {
if(order.getPayTime().getTime() >= begin && order.getPayTime().getTime() < end) {
filteredOrders.add(order);
// 按订单金额倒序排序
filteredOrders.sort(Comparator.comparing(Order::getGoodsAmount).reversed());
// 取前10名订单,组装出用户信息
List<User> users = new ArrayList<>();
Iterator<Order> it = filteredOrders.iterator();
for (int i = 0; i < 10 && it.hasNext(); i++) {
Order order = it.next();
users.add(new User(order.getUserId(), order.getUserName()));
return users;
上面代码与SQL的逻辑是一样的,但可以发现,上面代码的可理解性比SQL差很多,原因是SQL使用的是含义更加接近意图的声明式语法,而上述代码如果没有很好的注释的话,则需要你的大脑像CPU一样,将各种指令执行一遍才明白大概意图。
那我们再用Stream API实现一下这个函数看看,如下:
public static List<User> getTop10Users() throws ParseException {
List<Order> orders = getOrders();
long begin = DateUtils.parseDate("2022-11-01", "yyyy-MM-dd").getTime();
long end = DateUtils.parseDate("2022-12-01", "yyyy-MM-dd").getTime();
List<User> users = orders.stream()
.filter(order -> order.getPayTime().getTime() >= begin && order.getPayTime().getTime() < end)
.sorted(Comparator.comparing(Order::getGoodsAmount).reversed())
.limit(10)
.map(order -> new User(order.getUserId(), order.getUserName()))
.collect(Collectors.toList());
return users;
这段代码我没有加注释,但只要有过一点经验的程序员,都能很快明白它是在做啥,这是因为Stream API和SQL设计类似,使用的是更加接近意图的声明式函数,看到函数名就大概明白含义了。
大概解释一下,如下:
stream()
函数用于将集合转换为Stream流对象。
filter()
函数过滤Stream流中的元素,传入的逻辑表达式则为过滤规则。
sorted()
函数排序Stream流中的元素,使用传入的Comparator比较元素大小。
limit()
函数取前x个元素,传入参数指定取的元素个数。
map()
函数用于转换Stream中的元素为另一类型元素,可以类比于SQL从表中查询指定字段时,就好像是创建了一个包含这些字段的临时表一样。
Stream里面的函数大多很简单,就不逐一介绍了,如下:
类比SQL
这些是Stream比较基础的用法,下面看看一些更高级的用法吧!
reduce函数
可以看到Stream提供了min、max操作,但并没有提供sum、avg这样的操作,如果要实现sum、avg操作,就可以使用reduce(迭代)函数来实现,reduce函数有3个,如下:
下面以订单金额的sum汇总操作为示例,如下:
带初始值与累加器的reduce函数
T reduce(T identity, BinaryOperator<T> accumulator);
汇总示例:
List<Order> orders = getOrders();
BigDecimal sum = orders.stream()
.map(Order::getGoodsAmount)
.reduce(BigDecimal.ZERO, BigDecimal::add);
其中,reduce函数的identity参数BigDecimal.ZERO
相当于是初始值,而accumulator参数BigDecimal::add
是一个累加器,将Stream中的金额一个个累加起来。
reduce函数的执行逻辑大致如下:
无初始值的reduce函数
Optional<T> reduce(BinaryOperator<T> accumulator);
汇总示例:
List<Order> orders = getOrders();
BigDecimal sum = orders.stream()
.map(Order::getGoodsAmount)
.reduce(BigDecimal::add)
.orElse(BigDecimal.ZERO);
第2个reduce函数不传入初始值,只有累加器函数,返回Optional,因此当Stream中没有元素时,它返回的Optional没有值,这种情况我使用Optional.orElse
函数给了一个默认值BigDecimal.ZERO
。
带初始值、累加器、合并器的reduce函数
<U> U reduce(U identity,
BiFunction<U, ? super T, U> accumulator,
BinaryOperator<U> combiner);
汇总示例:
List<Order> orders = getOrders();
BigDecimal sum = orders.stream()
.reduce(BigDecimal.ZERO, (s, o) -> s.add(o.getGoodsAmount()), BigDecimal::add);
这个reduce函数的累加器和前面的不一样,前面的累加器的迭代元素与汇总结果都是BigDecimal,而这个累加器的迭代元素是Order类型,汇总结果是BigDecimal类型,它们可以不一样。
另外,这个reduce函数还提供了一个合并器,它是做什么用的?
其实合并器用于并行流场景,当使用多个线程处理数据时,数据拆分给多个线程后,每个线程使用累加器计算出自己的汇总值,然后使用合并器将各个线程的汇总值再次汇总,从而计算出最后结果,执行过程如下图:
使用reduce实现avg
reduce可以实现avg,但稍微有点繁琐,如下:
@Data
private static class SumCount {
private BigDecimal sum = BigDecimal.ZERO;
private Integer count = 0;
* 累加函数
* @param val
* @return
public SumCount accumulate(BigDecimal val) {
this.sum = this.sum.add(val);
this.count++;
return this;
* 合并函数
* @param sumCount
* @return
public SumCount merge(SumCount sumCount) {
SumCount sumCountNew = new SumCount();
sumCountNew.setSum(this.sum.add(sumCount.sum));
sumCountNew.setCount(this.count + sumCount.count);
return sumCountNew;
public Optional<BigDecimal> calAvg(int scale, int roundingMode) {
if (count == 0) {
return Optional.empty();
return Optional.of(this.sum.divide(BigDecimal.valueOf(count), scale, roundingMode));
List<Order> orders = getOrders();
Optional<BigDecimal> avg = orders.stream()
.map(Order::getGoodsAmount)
.reduce(new SumCount(), SumCount::accumulate, SumCount::merge)
.calAvg(2, BigDecimal.ROUND_HALF_UP);
如上,由于avg是由汇总值除以数量计算出来的,所以需要定义一个SumCount类来记录汇总值与数量,并实现它的累加器与合并器函数即可。
可以发现,使用reduce函数实现avg功能,还是有点麻烦的,而且代码可读性不强,大脑需要绕一下才知道是在求平均数,而collect函数就可以很方便的解决这个问题。
collect函数
Stream API提供了一个collect(收集)函数,用来处理一些比较复杂的使用场景,它传入一个收集器Collector用来收集流中的元素,并做特定的处理(如汇总),Collector定义如下:
public interface Collector<T, A, R> {
Supplier<A> supplier();
BiConsumer<A, T> accumulator();
BinaryOperator<A> combiner();
Function<A, R> finisher();
Set<Characteristics> characteristics();
其实,收集器与reduce是比较类似的,只是比reduce更加灵活了,如下:
supplier: 初始汇总值提供器,类似reduce中的identity,只是这个初始值是函数提供的。
accumulator:累加器,将值累加到收集器中,类似reduce中的accumulator。
combiner:合并器,用于并行流场景,类似reduce中的combiner。
finisher:结果转换器,将汇总对象转换为最终的指定类型对象。
characteristics:收集器特征标识,如是否支持并发等。
那用收集器实现类似上面的avg试试!
@Data
public class AvgCollector implements Collector<BigDecimal, SumCount, Optional<BigDecimal>> {
private int scale;
private int roundingMode;
public AvgCollector(int scale, int roundingMode) {
this.scale = scale;
this.roundingMode = roundingMode;
@Override
public Supplier<SumCount> supplier() {
return SumCount::new;
@Override
public BiConsumer<SumCount, BigDecimal> accumulator() {
return (sumCount, bigDecimal) -> {
sumCount.setSum(sumCount.getSum().add(bigDecimal));
sumCount.setCount(sumCount.getCount() + 1);
@Override
public BinaryOperator<SumCount> combiner() {
return (sumCount, otherSumCount) -> {
SumCount sumCountNew = new SumCount();
sumCountNew.setSum(sumCount.getSum().add(otherSumCount.getSum()));
sumCountNew.setCount(sumCount.getCount() + otherSumCount.getCount());
return sumCountNew;
@Override
public Function<SumCount, Optional<BigDecimal>> finisher() {
return sumCount -> {
if (sumCount.getCount() == 0) {
return Optional.empty();
return Optional.of(sumCount.getSum().divide(
BigDecimal.valueOf(sumCount.getCount()), this.scale, this.roundingMode));
@Override
public Set<Characteristics> characteristics() {
return Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.UNORDERED));
如上,实现一个AvgCollector
收集器,然后将这个收集器传给collect函数即可。
List<Order> orders = getOrders();
Optional<BigDecimal>> avg = orders.stream()
.map(Order::getGoodsAmount)
.collect(new AvgCollector(2, BigDecimal.ROUND_HALF_UP));
整体执行过程如下:
可以发现,其实Collector相比reduce,就是把相关操作都封装到一个收集器里面去了,这样做的好处是,可以事先定义好一些Collector,然后使用方就可以直接拿来用了。
所以,Java也为我们提供了一系列常用场景的Collector,它们放在Collectors中,如下:
元素收集到TreeSet中
TreeSet<Order> orderSet = orders.stream()
.collect(Collectors.toCollection(TreeSet::new));
元素收集到Map中
List<Order> orders = getOrders();
Map<Long, Order> orderMap = orders.stream()
.collect(Collectors.toMap(Order::getOrderId, Function.identity()));
如上,Order::getOrderId
函数为Map提供Key值,Function.identity()
函数定义如下:
它的作用是直接返回传给它的参数,你写成o -> o
也是可以的,如果你想得到Map<order_id, goods_amount>
这样的Map,那应该如下写:
List<Order> orders = getOrders();
Map<Long, BigDecimal> amountMap = orders.stream()
.collect(Collectors.toMap(Order::getOrderId, Order::getGoodsAmount));
在知道了怎么获取Key与Value后,Collectors.toMap()
收集器就知道怎么去生成Map了。
但toMap有一个容易忽略的坑,就是默认情况下,如果List生成的Key值有重复,则会抛出异常,如果你不想抛异常,可以再传入一个冲突处理函数,如下:
List<Order> orders = getOrders();
Map<Long, Order> orderMap = orders.stream()
.collect(Collectors.toMap(Order::getOrderId, Function.identity(), (ov, v)->v));
(ov, v)->v
函数含义是,当新元素Key值冲突时,ov是map中的旧值,v是新值,返回v则代表使用新值,即后面元素覆盖前面元素的值。
实现分组汇总操作
比如我们经常需要将List分组为Map<K, List<V>>
的形式,可以使用groupingBy收集器,看groupingBy收集器的定义,如下:
它需要提供两个参数,第一个参数classifier指定分类的Key回调函数,第二个参数downstream指定下游收集器,即提供每个Key对应Value的聚合收集器。
看几个例子:
按省份分组汇总订单
Map<Integer, List<Order>> groupedOrderMap = orders.stream()
.collect(Collectors.groupingBy(Order::getProvince, Collectors.toList()));
其中Order::getProvince
函数提供分类的Key值,Collectors.toList()
提供分类后的Value聚合操作,将值聚合成List。
按省份分组汇总单量
类似如下SQL:
select province, count(*) from order group by province;
java实现如下:
Map<Integer, Long> groupedCountMap = orders.stream()
.collect(Collectors.groupingBy(Order::getProvince,
Collectors.counting()));
按省份分组汇总金额
类似如下SQL:
select province, sum(goods_amount) from order group by province;
java实现如下:
Map<Integer, Optional<BigDecimal>> groupedAmountMap = orders.stream()
.collect(Collectors.groupingBy(Order::getProvince,
Collectors.mapping(Order::getGoodsAmount,
Collectors.reducing(BigDecimal::add))));
按省份分组汇总单号
类似如下SQL:
select province, group_concat(order_id) from order group by province;
java实现如下:
Map<Integer, String> groupedOrderIdMap = orders.stream()
.collect(Collectors.groupingBy(Order::getProvince,
Collectors.mapping(order -> order.getOrderId().toString(),
Collectors.joining(","))));
按省、市汇总并计算单量、金额等
类似如下SQL:
select province, city, count(*), group_concat(order_id), group_concat(goods_amount),
sum(goods_amount), min(goods_amount), max(goods_amount), avg(goods_amount)
from order
group by province, city;
java实现如下:
@NoArgsConstructor
@Data
class ProvinceCityStatistics {
private Integer province;
private Integer city;
private Long count;
private String orderIds;
private List<BigDecimal> amounts;
private BigDecimal sum;
private BigDecimal min;
private BigDecimal max;
private BigDecimal avg;
public ProvinceCityStatistics(Order order){
this.province = order.getProvince();
this.city = order.getCity();
this.count = 1L;
this.orderIds = String.valueOf(order.getOrderId());
this.amounts = new ArrayList<>(Collections.singletonList(order.getGoodsAmount()));
this.sum = order.getGoodsAmount();
this.min = order.getGoodsAmount();
this.max = order.getGoodsAmount();
this.avg = order.getGoodsAmount();
public ProvinceCityStatistics accumulate(ProvinceCityStatistics other) {
this.count = this.count + other.count;
this.orderIds = this.orderIds + "," + other.orderIds;
this.amounts.addAll(other.amounts);
this.sum = this.sum.add(other.sum);
this.min = this.min.compareTo(other.min) <= 0 ? this.min : other.min;
this.max = this.max.compareTo(other.max) >= 0 ? this.max : other.max;
this.avg = this.sum.divide(BigDecimal.valueOf(this.count), 2, BigDecimal.ROUND_HALF_UP);
return this;
List<Order> orders = getOrders();
Map<String, Optional<ProvinceCityStatistics>> groupedMap = orders.stream().collect(
Collectors.groupingBy(order -> order.getProvince() + "," + order.getCity(),
Collectors.mapping(order -> new ProvinceCityStatistics(order),
Collectors.reducing(ProvinceCityStatistics::accumulate)))
groupedMap.values().stream().map(Optional::get).forEach(provinceCityStatistics -> {
Integer province = provinceCityStatistics.getProvince();
Integer city = provinceCityStatistics.getCity();
long count = provinceCityStatistics.getCount();
String orderIds = provinceCityStatistics.getOrderIds();
List<BigDecimal> amounts = provinceCityStatistics.getAmounts();
BigDecimal sum = provinceCityStatistics.getSum();
BigDecimal min = provinceCityStatistics.getMin();
BigDecimal max = provinceCityStatistics.getMax();
BigDecimal avg = provinceCityStatistics.getAvg();
System.out.printf("province:%d, city: %d -> count: %d, orderIds: %s, amounts: %s," +
" sum: %s, min: %s, max: %s, avg : %s %n",
province, city, count, orderIds, amounts, sum, min, max, avg);
执行结果如下:
可以发现,使用Collectors.reducing
可以实现功能,但有点繁琐,且代码含义不明显,因此我封装了一个MultiCollector收集器,用来将多种收集器组合起来,实现这种复杂场景,如下:
* 将多个收集器,组合成一个收集器
* 汇总结果保存在Map<String, Object>中,最终结果转换成R类型返回
* @param <T>
public class MultiCollector<T, R> implements Collector<T, Map<String, Object>, R> {
private Class<R> clazz;
private Map<String, Collector<T, ?, ?>> collectorMap;
public MultiCollector(Class<R> clazz, Map<String, Collector<T, ?, ?>> collectorMap) {
this.clazz = clazz;
this.collectorMap = collectorMap;
@Override
public Supplier<Map<String, Object>> supplier() {
Map<String, Supplier<?>> supplierMap = new HashMap<>();
collectorMap.forEach((fieldName, collector) -> supplierMap.put(fieldName, collector.supplier()));
return () -> {
Map<String, Object> map = new HashMap<>();
supplierMap.forEach((fieldName, supplier) -> {
map.put(fieldName, supplier.get());
return map;
@Override
@SuppressWarnings("all")
public BiConsumer<Map<String, Object>, T> accumulator() {
Map<String, BiConsumer<?, T>> accumulatorMap = new HashMap<>();
collectorMap.forEach((fieldName, collector) -> accumulatorMap.put(fieldName, collector.accumulator()));
return (map, order) -> {
accumulatorMap.forEach((fieldName, accumulator) -> {
((BiConsumer)accumulator).accept(map.get(fieldName), order);
@Override
@SuppressWarnings("all")
public BinaryOperator<Map<String, Object>> combiner() {
Map<String, BinaryOperator<?>> combinerMap = new HashMap<>();
collectorMap.forEach((fieldName, collector) -> combinerMap.put(fieldName, collector.combiner()));
return (map, otherMap) -> {
combinerMap.forEach((fieldName, combiner) -> {
map.put(fieldName, ((BinaryOperator)combiner).apply(map.get(fieldName), otherMap.get(fieldName)));
return map;
@Override
@SuppressWarnings("all")
public Function<Map<String, Object>, R> finisher() {
Map<String, Function<?, ?>> finisherMap = new HashMap<>();
collectorMap.forEach((fieldName, collector) -> finisherMap.put(fieldName, collector.finisher()));
// 将Map<String, Object>反射转换成指定类对象,这里用json反序列化也可以
return map -> {
R result = newInstance(clazz);
finisherMap.forEach((fieldName, finisher) -> {
Object value = ((Function)finisher).apply(map.get(fieldName));
setFieldValue(result, fieldName, value);
return result;
@Override
public Set<Characteristics> characteristics() {
return Collections.emptySet();
private static <R> R newInstance(Class<R> clazz){
try {
return clazz.newInstance();
} catch (ReflectiveOperationException e) {
return ExceptionUtils.rethrow(e);
@SuppressWarnings("all")
private static void setFieldValue(Object obj, String fieldName, Object value){
if (obj instanceof Map){
((Map)obj).put(fieldName, value);
} else {
try {
new PropertyDescriptor(fieldName, obj.getClass()).getWriteMethod().invoke(obj, value);
} catch (Exception e) {
ExceptionUtils.rethrow(e);
然后封装一些语义更加明确的通用Collector方法,如下:
public class CollectorUtils {
* 取第一个元素,类似Stream.findFirst,返回Optional<U>
* @param mapper 获取字段值的函数
* @return
public static <T,U> Collector<T, ?, Optional<U>> findFirst(Function<T, U> mapper){
return Collectors.mapping(mapper, Collectors.reducing((u1, u2) -> u1));
* 取第一个元素,类似Stream.findFirst,返回U,可能是null
* @param mapper 获取字段值的函数
* @return
public static <T,U> Collector<T, ?, U> findFirstNullable(Function<T, U> mapper){
return Collectors.mapping(mapper,
Collectors.collectingAndThen(
Collectors.reducing((u1, u2) -> u1), opt -> opt.orElse(null)));
* 收集指定字段值为List
* @param mapper 获取字段值的函数
* @return
public static <T,U> Collector<T, ?, List<U>> toList(Function<T, U> mapper){
return Collectors.mapping(mapper, Collectors.toList());
* 收集指定字段为逗号分隔的字符串
* @param mapper 获取字段值的函数
* @return
public static <T, U> Collector<T, ?, String> joining(Function<T, U> mapper, CharSequence delimiter){
return Collectors.mapping(mapper.andThen(o -> Objects.toString(o, "")), Collectors.joining(delimiter));
* 对BigDecimal求和,返回Optional<BigDecimal>类型汇总值
* @param mapper 获取字段值的函数
* @return
public static <T> Collector<T, ?, Optional<BigDecimal>> summingBigDecimal(Function<T, BigDecimal> mapper){
return Collectors.mapping(mapper, Collectors.reducing(BigDecimal::add));
* 对BigDecimal求和,返回BigDecimal类型汇总值,可能是null
* @param mapper 获取字段值的函数
* @return
public static <T> Collector<T, ?, BigDecimal> summingBigDecimalNullable(Function<T, BigDecimal> mapper){
return Collectors.mapping(mapper,
Collectors.collectingAndThen(
Collectors.reducing(BigDecimal::add), opt -> opt.orElse(null)));
* 对BigDecimal求平均值,返回Optional<BigDecimal>类型平均值
* @param mapper 获取字段值的函数
* @return
public static <T> Collector<T, ?, Optional<BigDecimal>> averagingBigDecimal(Function<T, BigDecimal> mapper, int scale, int roundingMode){
return Collectors.mapping(mapper, new AvgCollector(scale, roundingMode));
* 对BigDecimal求平均值,返回BigDecimal类型平均值,可能是null
* @param mapper 获取字段值的函数
* @return
public static <T> Collector<T, ?, BigDecimal> averagingBigDecimalNullable(Function<T, BigDecimal> mapper, int scale, int roundingMode){
return Collectors.mapping(mapper,
Collectors.collectingAndThen(
new AvgCollector(scale, roundingMode), opt -> opt.orElse(null)));
* 求最小值,返回最小值Optional<U>
* @param mapper 获取字段值的函数
* @return
public static <T,U extends Comparable<? super U>> Collector<T, ?, Optional<U>> minBy(Function<T, U> mapper){
return Collectors.mapping(mapper, Collectors.minBy(Comparator.comparing(Function.identity())));
* 求最小值,返回最小值U,可能是null
* @param mapper 获取字段值的函数
* @return
public static <T,U extends Comparable<? super U>> Collector<T, ?, U> minByNullable(Function<T, U> mapper){
return Collectors.collectingAndThen(
Collectors.mapping(mapper,
Collectors.minBy(Comparator.comparing(Function.identity()))), opt -> opt.orElse(null));
* 求最大值,返回最大值Optional<U>
* @param mapper 获取字段值的函数
* @return
public static <T,U extends Comparable<? super U>> Collector<T, ?, Optional<U>> maxBy(Function<T, U> mapper){
return Collectors.mapping(mapper, Collectors.maxBy(Comparator.comparing(Function.identity())));
* 求最大值,返回最大值U,可能是null
* @param mapper 获取字段值的函数
* @return
public static <T,U extends Comparable<? super U>> Collector<T, ?, U> maxByNullable(Function<T, U> mapper){
return Collectors.collectingAndThen(
Collectors.mapping(mapper,
Collectors.maxBy(Comparator.comparing(Function.identity()))), opt -> opt.orElse(null));
CollectorUtils中封装的各Collector用途如下:
然后结合MultiCollector收集器与CollectorUtils中的各种Collector,就可以实现各种复杂的分组汇总逻辑了,如下:
@NoArgsConstructor
@Data
class ProvinceCityStatistics {
private Integer province;
private Integer city;
private Long count;
private String orderIds;
private List<BigDecimal> amounts;
private BigDecimal sum;
private BigDecimal min;
private BigDecimal max;
private BigDecimal avg;
List<Order> orders = getOrders();
Map<String, ProvinceCityStatistics> groupedMap = orders.stream().collect(
Collectors.groupingBy(order -> order.getProvince() + "," + order.getCity(),
new MultiCollector<>(
ProvinceCityStatistics.class,
//指定ProvinceCityStatistics各字段对应的收集器
MapBuilder.<String, Collector<Order, ?, ?>>create()
.put("province", CollectorUtils.findFirstNullable(Order::getProvince))
.put("city", CollectorUtils.findFirstNullable(Order::getCity))
.put("count", Collectors.counting())
.put("orderIds", CollectorUtils.joining(Order::getOrderId, ","))
.put("amounts", CollectorUtils.toList(Order::getGoodsAmount))
.put("sum", CollectorUtils.summingBigDecimalNullable(Order::getGoodsAmount))
.put("min", CollectorUtils.minByNullable(Order::getGoodsAmount))
.put("max", CollectorUtils.maxByNullable(Order::getGoodsAmount))
.put("avg", CollectorUtils.averagingBigDecimalNullable(Order::getGoodsAmount, 2, BigDecimal.ROUND_HALF_UP))
.build()
groupedMap.forEach((key, provinceCityStatistics) -> {
Integer province = provinceCityStatistics.getProvince();
Integer city = provinceCityStatistics.getCity();
long count = provinceCityStatistics.getCount();
String orderIds = provinceCityStatistics.getOrderIds();
List<BigDecimal> amounts = provinceCityStatistics.getAmounts();
BigDecimal sum = provinceCityStatistics.getSum();
BigDecimal min = provinceCityStatistics.getMin();
BigDecimal max = provinceCityStatistics.getMax();
BigDecimal avg = provinceCityStatistics.getAvg();
System.out.printf("province:%d, city: %d -> count: %d, orderIds: %s, amounts: %s," +
" sum: %s, min: %s, max: %s, avg : %s %n",
province, city, count, orderIds, amounts, sum, min, max, avg);
执行结果如下:
我想如果搞懂了这个,Collector API几乎就全玩明白了😅
Stream API非常实用,它的设计类似于SQL,相比于直接遍历处理集合的实现代码,用它来实现的可读性会更强。
当然,好用也不要滥用,API使用场景应该与其具体意图相对应,比如不要在filter里面去写非过滤逻辑的代码,虽然代码可能跑起来没问题,但这会误导读者,反而起到负面作用。