人脸属性识别能力可以识别检测人脸的性别、年龄、表情、眼镜、帽子五种属性,支持人脸遮挡、光照、模糊度、姿态、噪声综合质量评分,支持检测含有多张人脸的照片属性判断。
5. 开发接入步骤:
7. 客户端直接调用:该能力常用的客户端调用方式包括以下几种。
http://viapi-test.oss-cn-shanghai.aliyuncs.com/viapi-3.0domepic/facebody/RecognizeFace/RecognizeFace1.png
DenseFeatures
Array of String
[-0.04283177852630615, 0.01496131718158722, 0.08304227143526077, -0.006072732154279947, -0.012721054255962372, -0.024241730570793152, -0.03138406202197075, 0.006191537249833345, 0.017898650839924812, -0.03185232728719711, -0.02717948891222477, 0.028409384191036224, -0.03557640686631203, -0.02255111373960972, -0.030578967183828354, 0.011586467735469341, -0.005520580802112818, -0.0061850580386817455, -0.023915085941553116, 0.014204374514520168]
Landmarks
Array of Float
[371.31,170.54,421.14,162.72,395.33,156.36,396.06,167.71,377.92,164.47,386.19,158.26,404.89,156.61,413.89,157.87,378.82,171,387.24,168.73,404.84,167.34,413.57,167.26,458.27,159.5,521.24,165.59,490.58,......]
Qualities
Object
人脸质量情况,分数越高表示越有利于识别。
ScoreList
Array of Float
87.47
质量综合分数,分数越高越有利于识别,取值范围(0,100]。如有多张人脸,则依次返回。在识别时,推荐设置阈值大于等于
85(您可以按实际应用场景判断设置阈值与否及相应阈值大小),大于
85
代表图片综合质量越高,小于
85
代表图片综合质量越低。
BlurList
Array of Float
99.99
人脸模糊度对识别的影响分数,分数越高越有利于识别,取值范围(0,100]。如有多个人脸,则依次顺延。在识别时,推荐设置阈值大于等于
85(您可以按实际应用场景判断设置阈值与否及相应阈值大小),大于
85
代表图片模糊的概率越低,小于
85
代表图片模糊的概率越高。
FnfList
Array of Float
目标是否为人脸及其对识别的影响分数,分数越高越有利于识别,取值范围(0,100]。如有多个人脸,则依次顺延。在识别时,推荐设置阈值大于等于
85(您可以按实际应用场景判断设置阈值与否及相应阈值大小),大于
85
代表图片是人脸的概率越高,小于
85
代表图片不是人脸的概率越低。
GlassList
Array of Float
97.59
眼镜等上半脸遮挡对识别的影响分数,分数越高越有利于识别,取值范围(0,100]。如有多个人脸,则依次顺延。在识别时,推荐设置阈值大于等于
85(您可以按实际应用场景判断设置阈值与否及相应阈值大小),大于
85
代表戴眼镜的概率越低,小于
85
代表戴眼镜的概率越高。
IlluList
Array of Float
99.97
光照对识别的影响分数,分数越高越有利于识别,取值范围(0,100]。如有多个人脸,则依次顺延。在识别时,推荐设置阈值大于等于
85(您可以按实际应用场景判断设置阈值与否及相应阈值大小),大于
85
代表图片光照好的概率越高,小于
85
代表图片光照好的概率越低。
MaskList
Array of Float
93.33
口罩等下半脸遮挡对识别的影响分数,分数越高越有利于识别,取值范围(0,100]。如有多个人脸,则依次顺延。在识别时,推荐设置阈值大于等于
85(您可以按实际应用场景判断设置阈值与否及相应阈值大小),大于
85
代表戴口罩概率越低,小于
85
代表戴口罩概率越高。
NoiseList
Array of Float
99.73
图片噪声对识别的影响分数,分数越高越有利于识别,取值范围(0,100]。如有多个人脸,则依次顺延。在识别时,推荐设置阈值大于等于
85(您可以按实际应用场景判断设置阈值与否及相应阈值大小),大于
85
代表图片有噪声的概率越低,小于
85
代表图片有噪声的概率越高。
PoseList
Array of Float
11.57
姿态对识别的影响分数,分数越高越有利于识别,取值范围(0,100]。如有多个人脸,则依次顺延。在识别时,推荐设置阈值大于等于
85(您可以按实际应用场景判断设置阈值与否及相应阈值大小),大于
85
代表人脸姿态正面的概率越高,小于
85
代表人脸姿态正面的概率越低。
BeautyList
Array of Float
颜值分数,分值越高颜值越高,取值范围(0-100]。
HatList
Array of Integer
人脸是否佩戴帽子。
0:无帽子
1:有帽子
Array of Integer
[356,84,211,278]
返回人脸矩形框,分别是
[left, top, width, height]
。如有多个人脸,则依次顺延,返回矩形框。例如有两个人脸则返回
[left1, top1, width1, height1, left2, top2, width2, height2]
。
left-top: 表示以图片左上角为坐标原点,目标框所对应的左上角点位置(x,y),表示框的第一个点距离图片左边界
x
像素,距离上边界
y
个像素。
width-height:表示目标框的宽和高。
目标框面积为
width*height,目标框右下角坐标为(left+width,top+height)。
PoseList
Array of Float
[-12.7,7.48,0.12]
返回人脸姿态,格式为
[yaw, pitch, roll]
。如有多个人脸,则依次返回。
yaw
为左右角度,取值范围-90~90。
pitch
为上下角度,取值范围-90~90。
roll
为平面旋转角度,取值范围-180~180。
SDK
参考
阿里云视觉
AI
人脸人体类目下的人脸属性识别能力推荐使用
SDK
调用,支持多种编程语言,调用时请选择
AI
类目为人脸人体(facebody)的
SDK
包,文件参数通过
SDK
调用可支持本地文件及任意
URL,具体可参见
SDK
总览
。
该能力常用语言的示例代码,请参见
人脸属性识别示例代码
。
http(s)://facebody.cn-shanghai.aliyuncs.com/?Action=RecognizeFace //更多关于访问域名(Endpoint)信息,请参见:https://help.aliyun.com/document_detail/143103.html
&ImageURL=http://viapi-test.oss-cn-shanghai.aliyuncs.com/viapi-3.0domepic/facebody/RecognizeFace/RecognizeFace1.png
&Age=false
&Gender=false
&Hat=false
&Glass=false
&Beauty=false
&Expression=false
&Mask=false
&Quality=false
&MaxFaceNumber=1
&公共请求参数
正常返回示例
XML
格式
HTTP/1.1 200 OK
Content-Type:application/xml
<RecognizeFaceResponse>
<RequestId>8251C88E-8273-4DBF-94FB-A6BCB268CEA2</RequestId>
<Pupils>397.06</Pupils>
<Pupils>183.99</Pupils>
<Pupils>7.87</Pupils>
<Pupils>487.49</Pupils>
<Pupils>173.85</Pupils>
<Pupils>7.87</Pupils>
<GenderList>1</GenderList>
<Expressions>0</Expressions>
<DenseFeatures>[-0.04283177852630615, 0.01496131718158722, 0.08304227143526077, -0.006072732154279947, -0.012721054255962372, -0.024241730570793152, -0.03138406202197075, 0.006191537249833345, 0.017898650839924812, -0.03185232728719711, -0.02717948891222477, 0.028409384191036224, -0.03557640686631203, -0.02255111373960972, -0.030578967183828354, 0.011586467735469341, -0.005520580802112818, -0.0061850580386817455, -0.023915085941553116, 0.014204374514520168]</DenseFeatures>
<FaceCount>1</FaceCount>
<Landmarks>371.31</Landmarks>
<Landmarks>170.54</Landmarks>
<Landmarks>421.14</Landmarks>
<Landmarks>162.72</Landmarks>
<Landmarks>395.33</Landmarks>
<Landmarks>156.36</Landmarks>
<Landmarks>396.06</Landmarks>
<Landmarks>167.71</Landmarks>
<Landmarks>377.92</Landmarks>
<Landmarks>164.47</Landmarks>
<Landmarks>386.19</Landmarks>
<Landmarks>158.26</Landmarks>
<Landmarks>404.89</Landmarks>
<Landmarks>156.61</Landmarks>
<Landmarks>413.89</Landmarks>
<Landmarks>157.87</Landmarks>
<Landmarks>378.82</Landmarks>
<Landmarks>171</Landmarks>
<Landmarks>387.24</Landmarks>
<Landmarks>168.73</Landmarks>
<Landmarks>404.84</Landmarks>
<Landmarks>167.34</Landmarks>
<Landmarks>413.57</Landmarks>
<Landmarks>167.26</Landmarks>
<Landmarks>458.27</Landmarks>
<Landmarks>159.5</Landmarks>
<Landmarks>521.24</Landmarks>
<Landmarks>165.59</Landmarks>
<Landmarks>490.58</Landmarks>
<Landmarks>150.77</Landmarks>
<Landmarks>490.23</Landmarks>
<Landmarks>162.28</Landmarks>
<Landmarks>467.51</Landmarks>
<Landmarks>153.1</Landmarks>
<Landmarks>479.01</Landmarks>
<Landmarks>151.32</Landmarks>
<Landmarks>502.02</Landmarks>
<Landmarks>153.2</Landmarks>
<Landmarks>513.06</Landmarks>
<Landmarks>159.78</Landmarks>
<Landmarks>468</Landmarks>
<Landmarks>163.52</Landmarks>
<Landmarks>478.98</Landmarks>
<Landmarks>162.32</Landmarks>
<Landmarks>501.41</Landmarks>
<Landmarks>163.93</Landmarks>
<Landmarks>512.07</Landmarks>
<Landmarks>166.6</Landmarks>
<Landmarks>381.98</Landmarks>
<Landmarks>187.97</Landmarks>
<Landmarks>419.4</Landmarks>
<Landmarks>184.68</Landmarks>
<Landmarks>386.29</Landmarks>
<Landmarks>184.05</Landmarks>
<Landmarks>389.33</Landmarks>
<Landmarks>180.31</Landmarks>
<Landmarks>394.56</Landmarks>
<Landmarks>178.97</Landmarks>
<Landmarks>398.93</Landmarks>
<Landmarks>176.7</Landmarks>
<Landmarks>404.67</Landmarks>
<Landmarks>178.01</Landmarks>
<Landmarks>410.16</Landmarks>
<Landmarks>178.29</Landmarks>
<Landmarks>414.64</Landmarks>
<Landmarks>181.61</Landmarks>
<Landmarks>386.62</Landmarks>
<Landmarks>188.63</Landmarks>
<Landmarks>390.22</Landmarks>
<Landmarks>189.61</Landmarks>
<Landmarks>395.06</Landmarks>
<Landmarks>189.65</Landmarks>
<Landmarks>399.35</Landmarks>
<Landmarks>189.78</Landmarks>
<Landmarks>404.47</Landmarks>
<Landmarks>188.86</Landmarks>
<Landmarks>409.6</Landmarks>
<Landmarks>187.94</Landmarks>
<Landmarks>414.35</Landmarks>
<Landmarks>186.47</Landmarks>
<Landmarks>467.88</Landmarks>
<Landmarks>180.89</Landmarks>
<Landmarks>509.45</Landmarks>
<Landmarks>179.81</Landmarks>
<Landmarks>472.7</Landmarks>
<Landmarks>177.13</Landmarks>
<Landmarks>476.94</Landmarks>
<Landmarks>173.17</Landmarks>
<Landmarks>483.16</Landmarks>
<Landmarks>172.02</Landmarks>
<Landmarks>488.5</Landmarks>
<Landmarks>170.41</Landmarks>
<Landmarks>494.14</Landmarks>
<Landmarks>172.17</Landmarks>
<Landmarks>499.85</Landmarks>
<Landmarks>173.15</Landmarks>
<Landmarks>504.05</Landmarks>
<Landmarks>176.58</Landmarks>
<Landmarks>473.23</Landmarks>
<Landmarks>182.31</Landmarks>
<Landmarks>478.06</Landmarks>
<Landmarks>183.11</Landmarks>
<Landmarks>483.77</Landmarks>
<Landmarks>183.5</Landmarks>
<Landmarks>488.64</Landmarks>
<Landmarks>183.77</Landmarks>
<Landmarks>493.94</Landmarks>
<Landmarks>183.26</Landmarks>
<Landmarks>499.41</Landmarks>
<Landmarks>182.57</Landmarks>
<Landmarks>503.69</Landmarks>
<Landmarks>181.14</Landmarks>
<Landmarks>437.26</Landmarks>
<Landmarks>181.67</Landmarks>
<Landmarks>430.77</Landmarks>
<Landmarks>225.48</Landmarks>
<Landmarks>434.38</Landmarks>
<Landmarks>203.34</Landmarks>
<Landmarks>435.09</Landmarks>
<Landmarks>245.37</Landmarks>
<Landmarks>414.99</Landmarks>
<Landmarks>243.56</Landmarks>
<Landmarks>463.03</Landmarks>
<Landmarks>241.47</Landmarks>
<Landmarks>402.97</Landmarks>
<Landmarks>282.43</Landmarks>
<Landmarks>487.32</Landmarks>
<Landmarks>279.44</Landmarks>
<Landmarks>404.76</Landmarks>
<Landmarks>282.21</Landmarks>
<Landmarks>484.51</Landmarks>
<Landmarks>279.63</Landmarks>
<Landmarks>436.81</Landmarks>
<Landmarks>269.19</Landmarks>
<Landmarks>428.83</Landmarks>
<Landmarks>269.46</Landmarks>
<Landmarks>444.9</Landmarks>
<Landmarks>269.87</Landmarks>
<Landmarks>414.07</Landmarks>
<Landmarks>273.42</Landmarks>
<Landmarks>466.73</Landmarks>
<Landmarks>272.4</Landmarks>
<Landmarks>407.94</Landmarks>
<Landmarks>277.81</Landmarks>
<Landmarks>421.38</Landmarks>
<Landmarks>271.38</Landmarks>
<Landmarks>455.7</Landmarks>
<Landmarks>271</Landmarks>
<Landmarks>477.47</Landmarks>
<Landmarks>276.08</Landmarks>
<Landmarks>437.71</Landmarks>
<Landmarks>290.09</Landmarks>
<Landmarks>417.1</Landmarks>
<Landmarks>288.03</Landmarks>
<Landmarks>464.19</Landmarks>
<Landmarks>286.36</Landmarks>
<Landmarks>409.84</Landmarks>
<Landmarks>284.75</Landmarks>
<Landmarks>427.92</Landmarks>
<Landmarks>288.61</Landmarks>
<Landmarks>450.74</Landmarks>
<Landmarks>287.81</Landmarks>
<Landmarks>475.9</Landmarks>
<Landmarks>282.68</Landmarks>
<Landmarks>437.36</Landmarks>
<Landmarks>278.04</Landmarks>
<Landmarks>437.64</Landmarks>
<Landmarks>277.63</Landmarks>
<Landmarks>420.34</Landmarks>
<Landmarks>278.65</Landmarks>
<Landmarks>420.04</Landmarks>
<Landmarks>278.69</Landmarks>
<Landmarks>460.92</Landmarks>
<Landmarks>277.64</Landmarks>
<Landmarks>461.01</Landmarks>
<Landmarks>277.22</Landmarks>
<Landmarks>412.68</Landmarks>
<Landmarks>280.41</Landmarks>
<Landmarks>412.5</Landmarks>
<Landmarks>279.99</Landmarks>
<Landmarks>429.06</Landmarks>
<Landmarks>278.19</Landmarks>
<Landmarks>429.05</Landmarks>
<Landmarks>277.65</Landmarks>
<Landmarks>448.83</Landmarks>
<Landmarks>277.82</Landmarks>
<Landmarks>449.13</Landmarks>
<Landmarks>276.93</Landmarks>
<Landmarks>472.58</Landmarks>
<Landmarks>278.55</Landmarks>
<Landmarks>472.59</Landmarks>
<Landmarks>278.16</Landmarks>
<Landmarks>365.8</Landmarks>
<Landmarks>192</Landmarks>
<Landmarks>566.18</Landmarks>
<Landmarks>185.68</Landmarks>
<Landmarks>440.54</Landmarks>
<Landmarks>352.94</Landmarks>
<Landmarks>372.84</Landmarks>
<Landmarks>289.96</Landmarks>
<Landmarks>548.44</Landmarks>
<Landmarks>300.96</Landmarks>
<Landmarks>364.88</Landmarks>
<Landmarks>240.03</Landmarks>
<Landmarks>565.1</Landmarks>
<Landmarks>243.91</Landmarks>
<Landmarks>397.45</Landmarks>
<Landmarks>334.16</Landmarks>
<Landmarks>501.07</Landmarks>
<Landmarks>340.61</Landmarks>
<LandmarkCount>105</LandmarkCount>
<Qualities>
<ScoreList>87.47</ScoreList>
<BlurList>99.99</BlurList>
<FnfList>100</FnfList>
<GlassList>97.59</GlassList>
<IlluList>99.97</IlluList>
<MaskList>93.33</MaskList>
<NoiseList>99.73</NoiseList>
<PoseList>11.57</PoseList>
</Qualities>
<BeautyList>48</BeautyList>
<HatList>0</HatList>
<FaceProbabilityList>0.95</FaceProbabilityList>
<Glasses>1</Glasses>
<FaceRectangles>356</FaceRectangles>
<FaceRectangles>84</FaceRectangles>
<FaceRectangles>211</FaceRectangles>
<FaceRectangles>278</FaceRectangles>
<PoseList>-12.7</PoseList>
<PoseList>7.48</PoseList>
<PoseList>0.12</PoseList>
<AgeList>57</AgeList>
<DenseFeatureLength>1024</DenseFeatureLength>
<Masks>0</Masks>
</Data>
</RecognizeFaceResponse>
JSON
格式
HTTP/1.1 200 OK
Content-Type:application/json
"RequestId" : "8251C88E-8273-4DBF-94FB-A6BCB268CEA2",
"Data" : {
"Pupils" : [ 397.06, 183.99, 7.87, 487.49, 173.85, 7.87 ],
"GenderList" : [ 1 ],
"Expressions" : [ 0 ],
"DenseFeatures" : [ "[-0.04283177852630615, 0.01496131718158722, 0.08304227143526077, -0.006072732154279947, -0.012721054255962372, -0.024241730570793152, -0.03138406202197075, 0.006191537249833345, 0.017898650839924812, -0.03185232728719711, -0.02717948891222477, 0.028409384191036224, -0.03557640686631203, -0.02255111373960972, -0.030578967183828354, 0.011586467735469341, -0.005520580802112818, -0.0061850580386817455, -0.023915085941553116, 0.014204374514520168]" ],
"FaceCount" : 1,
"Landmarks" : [ 371.31, 170.54, 421.14, 162.72, 395.33, 156.36, 396.06, 167.71, 377.92, 164.47, 386.19, 158.26, 404.89, 156.61, 413.89, 157.87, 378.82, 171, 387.24, 168.73, 404.84, 167.34, 413.57, 167.26, 458.27, 159.5, 521.24, 165.59, 490.58, 150.77, 490.23, 162.28, 467.51, 153.1, 479.01, 151.32, 502.02, 153.2, 513.06, 159.78, 468, 163.52, 478.98, 162.32, 501.41, 163.93, 512.07, 166.6, 381.98, 187.97, 419.4, 184.68, 386.29, 184.05, 389.33, 180.31, 394.56, 178.97, 398.93, 176.7, 404.67, 178.01, 410.16, 178.29, 414.64, 181.61, 386.62, 188.63, 390.22, 189.61, 395.06, 189.65, 399.35, 189.78, 404.47, 188.86, 409.6, 187.94, 414.35, 186.47, 467.88, 180.89, 509.45, 179.81, 472.7, 177.13, 476.94, 173.17, 483.16, 172.02, 488.5, 170.41, 494.14, 172.17, 499.85, 173.15, 504.05, 176.58, 473.23, 182.31, 478.06, 183.11, 483.77, 183.5, 488.64, 183.77, 493.94, 183.26, 499.41, 182.57, 503.69, 181.14, 437.26, 181.67, 430.77, 225.48, 434.38, 203.34, 435.09, 245.37, 414.99, 243.56, 463.03, 241.47, 402.97, 282.43, 487.32, 279.44, 404.76, 282.21, 484.51, 279.63, 436.81, 269.19, 428.83, 269.46, 444.9, 269.87, 414.07, 273.42, 466.73, 272.4, 407.94, 277.81, 421.38, 271.38, 455.7, 271, 477.47, 276.08, 437.71, 290.09, 417.1, 288.03, 464.19, 286.36, 409.84, 284.75, 427.92, 288.61, 450.74, 287.81, 475.9, 282.68, 437.36, 278.04, 437.64, 277.63, 420.34, 278.65, 420.04, 278.69, 460.92, 277.64, 461.01, 277.22, 412.68, 280.41, 412.5, 279.99, 429.06, 278.19, 429.05, 277.65, 448.83, 277.82, 449.13, 276.93, 472.58, 278.55, 472.59, 278.16, 365.8, 192, 566.18, 185.68, 440.54, 352.94, 372.84, 289.96, 548.44, 300.96, 364.88, 240.03, 565.1, 243.91, 397.45, 334.16, 501.07, 340.61 ],
"LandmarkCount" : 105,
"Qualities" : {
"ScoreList" : [ 87.47 ],
"BlurList" : [ 99.99 ],
"FnfList" : [ 100 ],
"GlassList" : [ 97.59 ],
"IlluList" : [ 99.97 ],
"MaskList" : [ 93.33 ],
"NoiseList" : [ 99.73 ],
"PoseList" : [ 11.57 ]
"BeautyList" : [ 48 ],
"HatList" : [ 0 ],
"FaceProbabilityList" : [ 0.95 ],
"Glasses" : [ 1 ],
"FaceRectangles" : [ 356, 84, 211, 278 ],
"PoseList" : [ -12.7, 7.48, 0.12 ],
"AgeList" : [ 57 ],
"DenseFeatureLength" : 1024,
"Masks" : [ 0 ]
关于人脸属性识别的错误码,详情请参见常见错误码。
开源模型体验
更多开源免费模型体验及下载,详见魔搭社区:人脸属性识别模型FairFace、人脸表情识别模型FER、人脸质量模型FQA。
请确保上传的图片或文件来源符合相应的法律法规。
通过体验调试上传的临时文件有效期为1小时,在24小时后会被系统自动清理删除。
平台不存储用户在使用服务过程中涉及的原始人脸图片或文件信息。