Mechanochromic functionality realized via the force-responsive mechanophores in polymers has great potential for damage sensing and information storage. Mechanophores with the ability to recognize multiple stimuli for tunable chromic characteristics are highly sought after for versatile sensing ability and color programmability. Nevertheless, the majority of mechanophores are based on single-component The objective of this study was to create artificial enzymes that capitalize on pnictogen bonding, a s-hole interaction that is essentially absent in biocatalysis. For this purpose, stibine catalysts were equipped with a biotin derivative and combined with streptavidin mutants to identify an efficient transfer hydrogenation catalyst for the reduction of a fluorogenic quinoline substrate. Increased Organic scintillators are praised for their abundant element reserves, facile preparation procedures, and rich structures. Herein, a new family of highly efficient organic phosphonium halide salts with thermally activated delayed fluorescence (TADF) are designed by innovatively adopting quaternary phosphonium as the electron acceptor, while dimethylamine group and halide anions (I-) serve as the electron Herein, we describe an innovative approach to the asymmetric electrochemical α-alkylation of aldehydes facilitated by a newly designed bifunctional chiral electrocatalyst. The highly efficient bifunctional chiral electrocatalyst combines a chiral aminocatalyst with a redox mediator. It plays a dual role as a redox mediator for electrooxidation, while simultaneously providing remarkable asymmetric induction 5,18-Dimesitylorangarin and its BF2 complex were synthesized by double SNAr reaction of 3,5-dibromo-BODIPY with a-(pyro-2-ly)dipyrrin as the first examples of meso-aryl-substituted orangarin. These orangarins, delineated as [20]pentaphyrin(1.0.1.0.0), are strongly antiaromatic but rather stable. The free base orangarin was coupled by oxidation with MnO2 to give a 11,11’-linked dimer, a cyclooctate Ionogels are promising for soft iontronics, with their network structure playing a pivotal role in determining their performance and potential applications. However, simultaneously achieving mechanical toughness, low hysteresis, self-healing, and fluorescence using existing network structures is challenging. Drawing inspiration from jellyfish, we propose a novel hierarchical crosslinking network structure We present a series of borane-tethered cyclic (alkyl)(amino)carbene (cAAC)-copper complexes, including a borane-capped Cu(I) hydride. This hydride is unusually hydridic and reacts rapidly with both CO2 and 2,6-dimethylphenol at room temperature. Its reactivity is distinct from variants without a tethered borane, and the underlying principles governing the enhanced hydricity were evaluated experimentally The origin of translation is one of the most difficult problems of molecular evolution. Identifying molecular systems that translate an RNA sequence into a peptide sequence in the absence of ribosomes and enzymes is a challenge. Recently, single-nucleotide translation via coupling of 5' phosphoramidate-linked amino acids to 2'/3'-aminoacyl transfer-NMPs, as directed by the sequence of an RNA template Catalytic removal of alkynes is essential in industry for producing polymer-grade alkenes from steam cracking processes. Non-noble Ni-based catalysts hold promise as effective alternatives to industrial Pd-based catalysts but suffer from low activity. Here we report embedding of single-atom Pd onto the NiGa intermetallic surface with replacing Ga atoms via a well-defined synthesis strategy to design Due to the stability issue, It is difficult to prepare a silver nanocluster bearing functional sites, especially at a large scale. We report the synthesis and structure of a stable silver nanocluster bearing multiple surface aldehyde groups [Ag21(Ph2PO2)10(p-CHOPhC≡C)6]SbF6, which allows for postsynthesis modification such as surface functionalization through aldimine condensation to give homochiral Cyclic amino(alkyl) and cyclic amino(aryl) carbenes (cAACs/cAArCs) have been established as very useful ligands for catalytic and photonic applications of transition metal complexes. Herein, we describe the synthesis of a structurally related sterically demanding, electrophilic [2.2]isoindolinophanyl-based carbene (iPC) with a [2.2]paracyclophane moiety. The latter leads to more delocalized frontier Spillover of adsorbed species from one active site to another is a key step in heterogeneous catalysis. However, the factors controlling this step, particularly the spillover of polyatomic species, have rarely been studied. Herein, we investigate the spillover dynamics of H* and CH3* species on a single-atom alloy surface (Rh/Cu(111)) upon the dissociative chemisorption of methane (CH4), using molecular Cluster aggregation states are thermodynamically favored at the subnanoscale, for which an inverse growth from nanoparticles to clusters may be realized on subnanometer supports. Herein, we develop Au-polyoxometalate-layered double hydroxide (Au-POM-LDH) sub-1 nm nanosheets (Sub-APL) based on the above strategy, where sub-1 nm Au clusters with negative valence are generated by the in-situ disintegration In this work, a noncoplanar terphenyl served as building block to synthesize a novel 3,3'-substituted bipyridyl ligand (L1) which further reacted with binuclear half-sandwich units A/B, giving rise to two aesthetical 41 metalla-knots in high yields via coordination-driven self-assembly strategy. Furthermore, given the inherent compactness of the 41 metalla-knots, it creates favorable conditions for The cytoskeleton is essential for spatial and temporal organisation of a wide range of cellular and tissue-level processes, such as proliferation, signalling, cargo transport, migration, morphogenesis, and neuronal development. Cytoskeleton research aims to study these processes by imaging, or by locally manipulating, the dynamics and organisation of cytoskeletal proteins with high spatiotemporal resolution: As the anode reaction of anion exchange membrane fuel cells (AEMFCs), hydrogen oxidation reaction (HOR) has attracted great attention, however, suffers from the low kinetics in alkaline condition. In this work, we demonstrate that the strong synergy at the heterointerface of hexagonal close-packed (hcp) and face-centered cubic (fcc) phase of Ru-Sn nanoflowers can greatly contribute to accelerate the Recently, considerable efforts have been made on research and improvement for Ni-rich lithium-ion batteries to meet the demand from vehicles and grid-level large-scale energy storage. Development of next-generation high-performance lithium-ion batteries requires a comprehensive understanding on the underlying electrochemical mechanisms associated with its structural evolution. In this work, advanced Light pollution caused by the reflected light of buildings poses a growing threat to the global environment and human health. Currently, common luminescent solar concentrator (LSC), as an important transparent photovoltaic component for building integrated photovoltaic (BIPV), is unable to reduce light pollution due to the limited utilization of solar energy only in ultraviolet range. In this study A SIMPLIFIED AND STEPWISE SYNTHETIC METHOD FOR PRODUCING STERICALLY CONGESTED UNSYMMETRICAL 1,2-DICARBONYL RADICALS WAS SUCCESSFULLY DEMONSTRATED INCLUDING DETAILED CHARACTERIZATION OF EACH RADICAL CATION. USING THIS APPROACH, AN ARYL- AND N-HETEROCYCLIC CARBENE-SUBSTITUTED 1,2-DICARBONYL RADICAL IN ITS NEUTRAL FORM IS GENERATED, REVEALING THE STABILIZING ROLE OF N-HETEROCYCLIC CARBENES. A fluorinated quasi-solid electrolyte (QSE) with a high conductivity of 2.3 mS cm-1 is meticulously designed for Li metal batteries. It facilitates the formation of a LiF-rich solid electrolyte interface that effectively enhances the reversibility of Li anodes. The assembled Li|QSE|LiFePO4 batteries exhibit 92.3% capacity retension after 1500 cycles and an impressive capacity of up to 45 mAh g-1 at A mild Pd-catalyzed three-component cascade cyclizaiton functionalization of o-iodostyrenes, internal alkynes and boron reagents is presented. The transformation is driven by a controlled reaction sequence of intermolecular carbopalladation, intramolecular Heck-type cyclization, and borylation process to give the versatile boryl-functionalized indene skeletons in a selective fashion. Significantly, A ferrocene-modified COF, namely Ni-Tph-COF-Fc, was synthesized and applied in OER performance. The improved performance may be attributed to the fact that the introduced ferrocene can act as electron donors and carriers to form continuous electron transfer channels with metalloporphyrin in the COFs and promote intramolecular multi-electron transfer. Moreover, the enhanced OER performance leads to An efficient triple-click assembly using a newly designed trivalent platform is disclosed. We achieved the selective azaylide formation of 2,3,5,6-tetrafluorophenyl azides with o-ester-substituted triarylphosphines leaving 2,6-dichlorophenyl azides untouched. Further rapid Staudinger reaction of dichlorophenyl azides and subsequent triazole formation allowed us to prepare trifunctionalized molecules The incorporation of high-valence Ti4+ serves as a competitive strategy to augment CO2 adsorption and improve the photocatalytic capabilities of MOF-based photocatalysts. Herein, a series of valence-mismatched low-dose Ti ions doped MIL-53-NH2(Fe) were synthesized for photocatalytic CO2 reduction. Fe97.7/Ti2.3-MIL-NH2 shows excellent efficiency in photocatalytic CO2-to-CO conversion (7.24 mmol g-1