一文读懂Python复杂网络分析库networkx | CSDN博文精选

文章目录
1. 简介
- 安装
- 支持四种图
- 绘制网络图基本流程
2. Graph-无向图
节点
边
属性
有向图和无向图互转
3. DiGraph-有向图
- 一些精美的图例子
- 环形树状图
- 权重图
- Giant Component
- Random Geometric Graph 随机几何图
- 节点颜色渐变
- 边的颜色渐变
- Atlas
- 画个五角星
- Club
- 画一个多层感知机
- 绘制一个DNN结构图
- 一些图论算法
- 最短路径
4. 问题
- 一些其他神经网络绘制工具列表
5. 参考
1 简介
networkx是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析、仿真建模等工作。
利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等。
networkx支持创建简单无向图、有向图和多重图(multigraph);内置许多标准的图论算法,节点可为任意数据;支持任意的边值维度,功能丰富,简单易用。
networkx以图(graph)为基本数据结构。图既可以由程序生成,也可以来自在线数据源,还可以从文件与 数据库 中读取。
安装
安装的话,跟其他包的安装差不多,用的是anaconda就不用装了。其他就用pip install networkx。
查看版本:
1>>> import networkx
2>>> networkx.__version__
3'1.11'
升级
1pip install --upgrade networkx
下面配合使用的一些库,可以选择性安装: 后面可能用到pygraphviz,安装方法如下(亲测有效):
1sudo apt-get install graphviz
2sudo apt-get install graphviz libgraphviz-dev pkg-config
3sudo apt-get install python-pip python-virtualenv
4pip install pygraphviz
windows的安装参考这篇博客:https://blog.csdn.net/fadai1993/article/details/82491657#2____linux_9
安装cv2:
1pip install opencv-python #安装非常慢,用下面的方式,从清华源下载
2pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
支持四种图
- Graph:无多重边无向图
- DiGraph:无多重边有向图
- MultiGraph:有多重边无向图
- MultiDiGraph:有多重边有向图
空图对象的创建方式
1import networkx as nx
2G=nx.Graph()
3G=nx.DiGraph()
4G=nx.MultiGraph()
5G=nx.MultiDiGraph()
6G.clear() #清空图
绘制网络图基本流程
- 导入networkx,matplotlib包
- 建立网络
- 绘制网络 nx.draw()
- 建立布局 pos = nx.spring_layout美化作用
最基本画图程序
1import import networkx as nx #导入networkx包
2import matplotlib.pyplot as plt
3G = nx.random_graphs.barabasi_albert_graph(100,1) #生成一个BA无标度网络G
4nx.draw(G) #绘制网络G
5plt.savefig("ba.png") #输出方式1: 将图像存为一个png格式的图片文件
6plt.show() #输出方式2: 在窗口中显示这幅图像
networkx 提供画图的函数
1draw(G,[pos,ax,hold])
2draw_networkx(G,[pos,with_labels])
3draw_networkx_nodes(G,pos,[nodelist])绘制网络G的节点图
4draw_networkx_edges(G,pos[edgelist])绘制网络G的边图
5draw_networkx_edge_labels(G, pos[, …]) 绘制网络G的边图,边有label
6—有layout 布局画图函数的分界线—
7draw_circular(G, **kwargs) Draw the graph G with a circular layout.
8draw_random(G, **kwargs) Draw the graph G with a random layout.
9draw_spectral(G, **kwargs)Draw the graph G with a spectral layout.
10draw_spring(G, **kwargs)Draw the graph G with a spring layout.
11draw_shell(G, **kwargs) Draw networkx graph with shell layout.
12draw_graphviz(G[, prog])Draw networkx graph with graphviz layout.
networkx 画图函数里的一些参数
- pos(dictionary, optional): 图像的布局,可选择参数;如果是字典元素,则节点是关键字,位置是对应的值。如果没有指明,则会是spring的布局;也可以使用其他类型的布局,具体可以查阅networkx.layout
- arrows :布尔值,默认True; 对于有向图,如果是True则会画出箭头
- with_labels: 节点是否带标签(默认为True)
- ax:坐标设置,可选择参数;依照设置好的Matplotlib坐标画图
- nodelist:一个列表,默认G.nodes(); 给定节点
- edgelist:一个列表,默认G.edges();给定边
- node_size: 指定节点的尺寸大小(默认是300,单位未知,就是上图中那么大的点)
- node_color: 指定节点的颜色 (默认是红色,可以用字符串简单标识颜色,例如’r’为红色,'b’为绿色等,具体可查看手册),用“数据字典”赋值的时候必须对字典取值(.values())后再赋值
- node_shape: 节点的形状(默认是圆形,用字符串’o’标识,具体可查看手册)
- alpha: 透明度 (默认是1.0,不透明,0为完全透明)
- cmap:Matplotlib的颜色映射,默认None; 用来表示节点对应的强度
- vmin,vmax:浮点数,默认None;节点颜色映射尺度的最大和最小值
- linewidths:[None|标量|一列值];图像边界的线宽
- width: 边的宽度 (默认为1.0)
- edge_color: 边的颜色(默认为黑色)
- edge_cmap:Matplotlib的颜色映射,默认None; 用来表示边对应的强度
- edge_vmin,edge_vmax:浮点数,默认None;边的颜色映射尺度的最大和最小值
- style: 边的样式(默认为实现,可选:solid|dashed|dotted,dashdot)
- labels:字典元素,默认None;文本形式的节点标签
- font_size: 节点标签字体大小 (默认为12)
- font_color: 节点标签字体颜色(默认为黑色)
- node_size:节点大小
- font_weight:字符串,默认’normal’
- font_family:字符串,默认’sans-serif’
布局指定节点排列形式
- circular_layout:节点在一个圆环上均匀分布
- random_layout:节点随机分布shell_layout:节点在同心圆上分布
- spring_layout:用Fruchterman-Reingold算法排列节点,中心放射状分布
- spectral_layout:根据图的拉普拉斯特征向量排列节点
- 布局也可用pos参数指定,例如,nx.draw(G, pos = spring_layout(G)) 这样指定了networkx上以中心放射状分布.
2 Graph-无向图
如果添加的节点和边是已经存在的,是不会报错的,NetworkX会自动忽略掉已经存在的边和节点的添加。
节点
常用函数
- nodes(G):在图节点上返回一个迭代器
- number_of_nodes(G):返回图中节点的数量
- all_neighbors(graph, node):返回图中节点的所有邻居
- non_neighbors(graph, node):返回图中没有邻居的节点
- common_neighbors(G, u, v):返回图中两个节点的公共邻居
1import networkx as nx
2import matplotlib.pyplot as plt
3G = nx.Graph() # 建立一个空的无向图G
4#增加节点
5G.add_node('a') # 添加一个节点1
6G.add_nodes_from(['b', 'c', 'd', 'e']) # 加点集合
7G.add_cycle(['f', 'g', 'h', 'j']) # 加环
8H = nx.path_graph(10) # 返回由10个节点的无向图
9G.add_nodes_from(H) # 创建一个子图H加入G
10G.add_node(H) # 直接将图作为节点
12nx.draw(G, with_labels=True,node_color='red')
13plt.show()
15#访问节点
16print('图中所有的节点', G.nodes())
17#图中所有的节点 [0, 1, 2, 3, 'a', 'c', 'f', 7, 8, 9, <networkx.classes.graph.Graph object at 0x7fdf7d0d2780>, 'g', 'e', 'h', 'b', 4, 6, 5, 'j', 'd']
19print('图中节点的个数', G.number_of_nodes())
20#图中节点的个数 20
22#删除节点
23G.remove_node(1) #删除指定节点
24G.remove_nodes_from(['b','c','d','e']) #删除集合中的节点

边常用函数
- edges(G[, nbunch]):返回与nbunch中的节点相关的边的视图
- number_of_edges(G):返回图中边的数目
- non_edges(graph):返回图中不存在的边
1import networkx as nx
2import matplotlib.pyplot as plt
4#添加边方法1
6F = nx.Graph() # 创建无向图
7F.add_edge(11,12) #一次添加一条边
9#添加边方法2
10e=(13,14) #e是一个元组
11F.add_edge(*e) #这是python中解包裹的过程
13#添加边方法3
14F.add_edges_from([(1,2),(1,3)]) #通过添加list来添加多条边
16H = nx.path_graph(10) #返回由10个节点的无向图
17#通过添加任何ebunch来添加边
18F.add_edges_from(H.edges()) #不能写作F.add_edges_from(H)
20nx.draw(F, with_labels=True)
21plt.show()
23#访问边
24print('图中所有的边', F.edges())
25# 图中所有的边 [(0, 1), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (11, 12), (13, 14)]
27print('图中边的个数', F.number_of_edges())
28# 图中边的个数 12
32#删除边
33F.remove_edge(1,2)
34F.remove_edges_from([(11,12), (13,14)])
36nx.draw(F, with_labels=True)
37plt.show()

使用邻接迭代器遍历每一条边
1import networkx as nx
2import matplotlib.pyplot as plt
4#快速遍历每一条边,可以使用邻接迭代器实现,对于无向图,每一条边相当于两条有向边
5FG = nx.Graph()
6FG.add_weighted_edges_from([(1,2,0.125), (1,3,0.75), (2,4,1.2), (3,4,0.275)])
7for n, nbrs in FG.adjacency_iter():
8 for nbr, eattr in nbrs.items():
9 data = eattr['weight']
10 print('(%d, %d, %0.3f)' % (n,nbr,data))
11 # (1, 2, 0.125)
12 # (1, 3, 0.750)
13 # (2, 1, 0.125)
14 # (2, 4, 1.200)
15 # (3, 1, 0.750)
16 # (3, 4, 0.275)
17 # (4, 2, 1.200)
18 # (4, 3, 0.275)
20print('***********************************')
22#筛选weight小于0.5的边:
23FG = nx.Graph()
24FG.add_weighted_edges_from([(1,2,0.125), (1,3,0.75), (2,4,1.2), (3,4,0.275)])
25for n, nbrs in FG.adjacency_iter():
26 for nbr, eattr in nbrs.items():
27 data = eattr['weight']
28 if data < 0.5:
29 print('(%d, %d, %0.3f)' % (n,nbr,data))
30 # (1, 2, 0.125)
31 # (2, 1, 0.125)
32 # (3, 4, 0.275)
33 # (4, 3, 0.275)
35print('***********************************')
37#一种方便的访问所有边的方法:
38for u,v,d in FG.edges(data = 'weight'):
39 print((u,v,d))
40 # (1, 2, 0.125)
41 # (1, 3, 0.75)
42 # (2, 4, 1.2)
43 # (3, 4, 0.275)
属性
属性诸如weight,labels,colors,或者任何对象,都可以附加到图、节点或边上。
对于每一个图、节点和边都可以在关联的属性字典中保存一个(多个)键-值对。
默认情况下这些是一个空的字典,但是可以增加或者是改变这些属性。
图的属性
1#图的属性
3import networkx as nx
5G = nx.Graph(day='Monday') #可以在创建图时分配图的属性
6print(G.graph)
8G.graph['day'] = 'Friday' #也可以修改已有的属性
9print(G.graph)
11G.graph['name'] = 'time' #可以随时添加新的属性到图中
12print(G.graph)
14输出:
15{'day': 'Monday'}
16{'day': 'Friday'}
17{'day': 'Friday', 'name': 'time'}
节点的属性
1#节点的属性
2import networkx as nx
4G = nx.Graph(day='Monday')
5G.add_node(1, index='1th') #在添加节点时分配节点属性
6# print(G.node(data=True)) #TypeError: 'dict' object is not callable
7print(G.node)
8#{1: {'index': '1th'}}
11G.node[1]['index'] = '0th' #通过G.node[][]来添加或修改属性
12print(G.node)
13# {1: {'index': '0th'}}
16G.add_nodes_from([2,3], index='2/3th') #从集合中添加节点时分配属性
17print(G.node)
18# {1: {'index': '0th'}, 2: {'index': '2/3th'}, 3: {'index': '2/3th'}}
边的属性
1#边的属性
2import networkx as nx
4G = nx.Graph(day='manday')
5G.add_edge(1,2,weight=10) #在添加边时分配属性
6print(G.edges(data=True))
7#[(1, 2, {'weight': 10})]
9G.add_edges_from([(1,3), (4,5)], len=22) #从集合中添加边时分配属性
10print(G.edges(data='len'))
11# [(1, 2, None), (1, 3, 22), (4, 5, 22)]
13G.add_edges_from([(3,4,{'hight':10}),(1,4,{'high':'unknow'})])
14print(G.edges(data=True))
15# [(1, 2, {'weight': 10}), (1, 3, {'len': 22}), (1, 4, {'high': 'unknow'}), (3, 4, {'hight': 10}), (4, 5, {'len': 22})]
18G[1][2]['weight'] = 100000 #通过G[][][]来添加或修改属性
19print(G.edges(data=True))
20# [(1, 2, {'weight': 100000}), (1, 3, {'len': 22}), (1, 4, {'high': 'unknow'}), (3, 4, {'hight': 10}), (4, 5, {'len': 22})]
有向图和无向图互转
有向图和多重图的基本操作与无向图一致。
无向图与有向图之间可以相互转换,转化方法如下:
1#有向图转化成无向图
3H=DG.to_undirected()
5H=nx.Graph(DG)
7#无向图转化成有向图
9F = H.to_directed()
10#或者
11F = nx.DiGraph(H)
3、DiGraph-有向图
1import networkx as nx
2import matplotlib.pyplot as plt
4G = nx.DiGraph()
5G.add_node(1)
6G.add_node(2)
7G.add_nodes_from([3,4,5,6])
8G.add_cycle([1,2,3,4])
9G.add_edge(1,3)
10G.add_edges_from([(3,5),(3,6),(6,7)])
11nx.draw(G,node_color = 'red')
12plt.savefig("youxiangtu.png")
13plt.show()

1from __future__ import division
2import matplotlib.pyplot as plt
3import networkx as nx
5G = nx.generators.directed.random_k_out_graph(10, 3, 0.5)
6pos = nx.layout.spring_layout(G)
8node_sizes = [3 + 10 * i for i in range(len(G))]
9M = G.number_of_edges()
10edge_colors = range(2, M + 2)
11edge_alphas = [(5 + i) / (M + 4) for i in range(M)]
13nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='blue')
14edges = nx.draw_networkx_edges(G, pos, node_size=node_sizes, arrowstyle='->',
15 arrowsize=10, edge_color=edge_colors,
16 edge_cmap=plt.cm.Blues, width=2)
17# set alpha value for each edge
18for i in range(M):
19 edges[i].set_alpha(edge_alphas[i])
21ax = plt.gca()
22ax.set_axis_off()
23plt.savefig("directed.jpg")
24plt.show()

一些精美的图例子
环形树状图
1import matplotlib.pyplot as plt
2import networkx as nx
4try:
5 import pygraphviz
6 from networkx.drawing.nx_agraph import graphviz_layout
7except ImportError:
8 try:
9 import pydot
10 from networkx.drawing.nx_pydot import graphviz_layout
11 except ImportError:
12 raise ImportError("This example needs Graphviz and either "
13 "PyGraphviz or pydot")
15G = nx.balanced_tree(3, 5)
16pos = graphviz_layout(G, prog='twopi', args='')
17plt.figure(figsize=(8, 8))
18nx.draw(G, pos, node_size=20, alpha=0.5, node_color="blue", with_labels=False)
19plt.axis('equal')
20plt.show()

权重图
1import matplotlib.pyplot as plt
2import networkx as nx
4G = nx.Graph()
6G.add_edge('a', 'b', weight=0.6)
7G.add_edge('a', 'c', weight=0.2)
8G.add_edge('c', 'd', weight=0.1)
9G.add_edge('c', 'e', weight=0.7)
10G.add_edge('c', 'f', weight=0.9)
11G.add_edge('a', 'd', weight=0.3)
13elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] > 0.5]
14esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] <= 0.5]
16pos = nx.spring_layout(G) # positions for all nodes
18# nodes
19nx.draw_networkx_nodes(G, pos, node_size=700)
21# edges
22nx.draw_networkx_edges(G, pos, edgelist=elarge,
23 width=6)
24nx.draw_networkx_edges(G, pos, edgelist=esmall,
25 width=6, alpha=0.5, edge_color='b', style='dashed')
27# labels
28nx.draw_networkx_labels(G, pos, font_size=20, font_family='sans-serif')
30plt.axis('off')
31plt.savefig("weight.jpg")
32plt.show()

Giant Component
1import math
4import matplotlib.pyplot as plt
5import networkx as nx
7try:
8 import pygraphviz
9 from networkx.drawing.nx_agraph import graphviz_layout
10 layout = graphviz_layout
11except ImportError:
12 try:
13 import pydot
14 from networkx.drawing.nx_pydot import graphviz_layout
15 layout = graphviz_layout
16 except ImportError:
17 print("PyGraphviz and pydot not found;\n"
18 "drawing with spring layout;\n"
19 "will be slow.")
20 layout = nx.spring_layout
22n = 150 # 150 nodes
23# p value at which giant component (of size log(n) nodes) is expected
24p_giant = 1.0 / (n - 1)
25# p value at which graph is expected to become completely connected
26p_conn = math.log(n) / float(n)
28# the following range of p values should be close to the threshold
29pvals = [0.003, 0.006, 0.008, 0.015]
31region = 220 # for pylab 2x2 subplot layout
32plt.subplots_adjust(left=0, right=1, bottom=0, top=0.95, wspace=0.01, hspace=0.01)
33for p in pvals:
34 G = nx.binomial_graph(n, p)
35 pos = layout(G)
36 region += 1
37 plt.subplot(region)
38 plt.title("p = %6.3f" % (p))
39 nx.draw(G, pos,
40 with_labels=False,
41 node_size=10
42 )
43 # identify largest connected component
44 Gcc = sorted(nx.connected_component_subgraphs(G), key=len, reverse=True)
45 G0 = Gcc[0]
46 nx.draw_networkx_edges(G0, pos,
47 with_labels=False,
48 edge_color='r',
49 width=6.0
50 )
51 # show other connected components
52 for Gi in Gcc[1:]:
53 if len(Gi) > 1:
54 nx.draw_networkx_edges(Gi, pos,
55 with_labels=False,
56 edge_color='r',
57 alpha=0.3,
58 width=5.0
59 )
60plt.show()

Random Geometric Graph 随机几何图
1import matplotlib.pyplot as plt
2import networkx as nx
4G = nx.random_geometric_graph(200, 0.125)
5# position is stored as node attribute data for random_geometric_graph
6pos = nx.get_node_attributes(G, 'pos')
8# find node near center (0.5,0.5)
9dmin = 1
10ncenter = 0
11for n in pos:
12 x, y = pos[n]
13 d = (x - 0.5)**2 + (y - 0.5)**2
14 if d < dmin:
15 ncenter = n
16 dmin = d
18# color by path length from node near center
19p = dict(nx.single_source_shortest_path_length(G, ncenter))
21plt.figure(figsize=(8, 8))
22nx.draw_networkx_edges(G, pos, nodelist=[ncenter], alpha=0.4)
23nx.draw_networkx_nodes(G, pos, nodelist=list(p.keys()),
24 node_size=80,
25 node_color=list(p.values()),
26 cmap=plt.cm.Reds_r)
28plt.xlim(-0.05, 1.05)
29plt.ylim(-0.05, 1.05)
30#plt.axis('off')
31plt.show()

节点颜色渐变
1import networkx as nx
2import matplotlib.pyplot as plt
3G = nx.cycle_graph(24)
4pos = nx.spring_layout(G, iterations=200)
5nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
6plt.savefig("node.jpg")
7plt.show()

边的颜色渐变
1import matplotlib.pyplot as plt
2import networkx as nx
4G = nx.star_graph(20)
5pos = nx.spring_layout(G) #布局为中心放射状
6colors = range(20)
7nx.draw(G, pos, node_color='#A0CBE2', edge_color=colors,
8 width=4, edge_cmap=plt.cm.Blues, with_labels=False)
9plt.show()

Atlas
1import random
3try:
4 import pygraphviz
5 from networkx.drawing.nx_agraph import graphviz_layout
6except ImportError:
7 try:
8 import pydot
9 from networkx.drawing.nx_pydot import graphviz_layout
10 except ImportError:
11 raise ImportError("This example needs Graphviz and either "
12 "PyGraphviz or pydot.")
14import matplotlib.pyplot as plt
16import networkx as nx
17from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic as isomorphic
18from networkx.generators.atlas import graph_atlas_g
21def atlas6():
22 """ Return the atlas of all connected graphs of 6 nodes or less.
23 Attempt to check for isomorphisms and remove.
24 """
26 Atlas = graph_atlas_g()[0:208] # 208
27 # remove isolated nodes, only connected graphs are left
28 U = nx.Graph() # graph for union of all graphs in atlas
29 for G in Atlas:
30 zerodegree = [n for n in G if G.degree(n) == 0]
31 for n in zerodegree:
32 G.remove_node(n)
33 U = nx.disjoint_union(U, G)
35 # iterator of graphs of all connected components
36 C = (U.subgraph(c) for c in nx.connected_components(U))
38 UU = nx.Graph()
39 # do quick isomorphic-like check, not a true isomorphism checker
40 nlist = [] # list of nonisomorphic graphs
41 for G in C:
42 # check against all nonisomorphic graphs so far
43 if not iso(G, nlist):
44 nlist.append(G)
45 UU = nx.disjoint_union(UU, G) # union the nonisomorphic graphs
46 return UU
49def iso(G1, glist):
50 """Quick and dirty nonisomorphism checker used to check isomorphisms."""
51 for G2 in glist:
52 if isomorphic(G1, G2):
53 return True
54 return False
57if __name__ == '__main__':
58 G = atlas6()
60 print("graph has %d nodes with %d edges"
61 % (nx.number_of_nodes(G), nx.number_of_edges(G)))
62 print(nx.number_connected_components(G), "connected components")
64 plt.figure(1, figsize=(8, 8))
65 # layout graphs with positions using graphviz neato
66 pos = graphviz_layout(G, prog="neato")
67 # color nodes the same in each connected subgraph
68 C = (G.subgraph(c) for c in nx.connected_components(G))
69 for g in C:
70 c = [random.random()] * nx.number_of_nodes(g) # random color...
71 nx.draw(g,
72 pos,
73 node_size=40,
74 node_color=c,
75 vmin=0.0,
76 vmax=1.0,
77 with_labels=False
78 )
79 plt.show()

画个五角星
1import networkx as nx
2import matplotlib.pyplot as plt
3#画图!
4G=nx.Graph()
5G.add_node(1)
6G.add_nodes_from([2,3,4,5])
7for i in range(5):
8 for j in range(i):
9 if (abs(i-j) not in (1,4)):
10 G.add_edge(i+1, j+1)
11nx.draw(G,
12 with_labels=True, #这个选项让节点有名称
13 edge_color='b', # b stands for blue!
14 pos=nx.circular_layout(G), # 这个是选项选择点的排列方式,具体可以用 help(nx.drawing.layout) 查看
15 # 主要有spring_layout (default), random_layout, circle_layout, shell_layout
16 # 这里是环形排布,还有随机排列等其他方式
17 node_color='r', # r = red
18 node_size=1000, # 节点大小
19 width=3, # 边的宽度
20 )
21plt.savefig("star.jpg")
22plt.show()

Club
1import matplotlib.pyplot as plt
2import networkx as nx
3import networkx.algorithms.bipartite as bipartite
5G = nx.davis_southern_women_graph()
6women = G.graph['top']
7clubs = G.graph['bottom']
9print("Biadjacency matrix")
10print(bipartite.biadjacency_matrix(G, women, clubs))
12# project bipartite graph onto women nodes
13W = bipartite.projected_graph(G, women)
14print('')
15print("#Friends, Member")
16for w in women:
17 print('%d %s' % (W.degree(w), w))
19# project bipartite graph onto women nodes keeping number of co-occurence
20# the degree computed is weighted and counts the total number of shared contacts
21W = bipartite.weighted_projected_graph(G, women)
22print('')
23print("#Friend meetings, Member")
24for w in women:
25 print('%d %s' % (W.degree(w, weight='weight'), w))
27nx.draw(G,node_color="red")
28plt.savefig("club.jpg")
29plt.show()

画一个多层感知机
1import matplotlib.pyplot as plt
2import networkx as nx
3left, right, bottom, top, layer_sizes = .1, .9, .1, .9, [4, 7, 7, 2]
4# 网络离上下左右的距离
5# layter_sizes可以自己调整
6import random
7G = nx.Graph()
8v_spacing = (top - bottom)/float(max(layer_sizes))
9h_spacing = (right - left)/float(len(layer_sizes) - 1)
10node_count = 0
11for i, v in enumerate(layer_sizes):
12 layer_top = v_spacing*(v-1)/2. + (top + bottom)/2.
13 for j in range(v):
14 G.add_node(node_count, pos=(left + i*h_spacing, layer_top - j*v_spacing))
15 node_count += 1
16# 这上面的数字调整我想了好半天,汗
17for x, (left_nodes, right_nodes) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
18 for i in range(left_nodes):
19 for j in range(right_nodes):
20 G.add_edge(i+sum(layer_sizes[:x]), j+sum(layer_sizes[:x+1]))
22pos=nx.get_node_attributes(G,'pos')
23# 把每个节点中的位置pos信息导出来
24nx.draw(G, pos,
25 node_color=range(node_count),
26 with_labels=True,
27 node_size=200,
28 edge_color=[random.random() for i in range(len(G.edges))],
29 width=3,
30 cmap=plt.cm.Dark2, # matplotlib的调色板,可以搜搜,很多颜色
31 edge_cmap=plt.cm.Blues
32 )
33plt.savefig("mlp.jpg")
34plt.show()

绘制一个DNN结构图
1# -*- coding:utf-8 -*-
2import networkx as nx
3import matplotlib.pyplot as plt
5# 创建DAG
6G = nx.DiGraph()
8# 顶点列表
9vertex_list = ['v'+str(i) for i in range(1, 22)]
10# 添加顶点
11G.add_nodes_from(vertex_list)
13# 边列表
14edge_list = [
15 ('v1', 'v5'), ('v1', 'v6'), ('v1', 'v7'),('v1', 'v8'),('v1', 'v9'),
16 ('v2', 'v5'), ('v2', 'v6'), ('v2', 'v7'),('v2', 'v8'),('v2', 'v9'),
17 ('v3', 'v5'), ('v3', 'v6'), ('v3', 'v7'),('v3', 'v8'),('v3', 'v9'),
18 ('v4', 'v5'), ('v4', 'v6'), ('v4', 'v7'),('v4', 'v8'),('v4', 'v9'),
19 ('v5','v10'),('v5','v11'),('v5','v12'),('v5','v13'),('v5','v14'),('v5','v15'),
20 ('v6','v10'),('v6','v11'),('v6','v12'),('v6','v13'),('v6','v14'),('v6','v15'),
21 ('v7','v10'),('v7','v11'),('v7','v12'),('v7','v13'),('v7','v14'),('v7','v15'),
22 ('v8','v10'),('v8','v11'),('v8','v12'),('v8','v13'),('v8','v14'),('v8','v15'),
23 ('v9','v10'),('v9','v11'),('v9','v12'),('v9','v13'),('v9','v14'),('v9','v15'),
24 ('v10','v16'),('v10','v17'),('v10','v18'),
25 ('v11','v16'),('v11','v17'),('v11','v18'),
26 ('v12','v16'),('v12','v17'),('v12','v18'),
27 ('v13','v16'),('v13','v17'),('v13','v18'),
28 ('v14','v16'),('v14','v17'),('v14','v18'),
29 ('v15','v16'),('v15','v17'),('v15','v18'),
30 ('v16','v19'),
31 ('v17','v20'),
32 ('v18','v21')
33 ]
34# 通过列表形式来添加边
35G.add_edges_from(edge_list)
37# 绘制DAG图
38plt.title('DNN for iris') #图片标题
40nx.draw(
41 G,
42 node_color = 'red', # 顶点颜色
43 edge_color = 'black', # 边的颜色
44 with_labels = True, # 显示顶点标签
45 font_size =10, # 文字大小
46 node_size =300 # 顶点大小
47 )
48# 显示图片
49plt.show()

可以看到,在代码中已经设置好了这22个神经元以及它们之间的连接情况,但绘制出来的结构如却是这样的:
这显然不是想要的结果,因为各神经的连接情况不明朗,而且很多神经都挤在了一起,看不清楚。之所以出现这种情况,是因为没有给神经元设置坐标,导致每个神经元都是随机放置的。
接下来,引入坐标机制,即设置好每个神经元节点的坐标,使得它们的位置能够按照事先设置好的来放置,其Python代码如下:
1# -*- coding:utf-8 -*-
2import networkx as nx
3import matplotlib.pyplot as plt
5# 创建DAG
6G = nx.DiGraph()
8# 顶点列表
9vertex_list = ['v'+str(i) for i in range(1, 22)]
10# 添加顶点
11G.add_nodes_from(vertex_list)
13# 边列表
14edge_list = [
15 ('v1', 'v5'), ('v1', 'v6'), ('v1', 'v7'),('v1', 'v8'),('v1', 'v9'),
16 ('v2', 'v5'), ('v2', 'v6'), ('v2', 'v7'),('v2', 'v8'),('v2', 'v9'),
17 ('v3', 'v5'), ('v3', 'v6'), ('v3', 'v7'),('v3', 'v8'),('v3', 'v9'),
18 ('v4', 'v5'), ('v4', 'v6'), ('v4', 'v7'),('v4', 'v8'),('v4', 'v9'),
19 ('v5','v10'),('v5','v11'),('v5','v12'),('v5','v13'),('v5','v14'),('v5','v15'),
20 ('v6','v10'),('v6','v11'),('v6','v12'),('v6','v13'),('v6','v14'),('v6','v15'),
21 ('v7','v10'),('v7','v11'),('v7','v12'),('v7','v13'),('v7','v14'),('v7','v15'),
22 ('v8','v10'),('v8','v11'),('v8','v12'),('v8','v13'),('v8','v14'),('v8','v15'),
23 ('v9','v10'),('v9','v11'),('v9','v12'),('v9','v13'),('v9','v14'),('v9','v15'),
24 ('v10','v16'),('v10','v17'),('v10','v18'),
25 ('v11','v16'),('v11','v17'),('v11','v18'),
26 ('v12','v16'),('v12','v17'),('v12','v18'),
27 ('v13','v16'),('v13','v17'),('v13','v18'),
28 ('v14','v16'),('v14','v17'),('v14','v18'),
29 ('v15','v16'),('v15','v17'),('v15','v18'),
30 ('v16','v19'),
31 ('v17','v20'),
32 ('v18','v21')
33 ]
34# 通过列表形式来添加边
35G.add_edges_from(edge_list)
37# 指定绘制DAG图时每个顶点的位置
38pos = {
39 'v1':(-2,1.5),
40 'v2':(-2,0.5),
41 'v3':(-2,-0.5),
42 'v4':(-2,-1.5),
43 'v5':(-1,2),
44 'v6': (-1,1),
45 'v7':(-1,0),
46 'v8':(-1,-1),
47 'v9':(-1,-2),
48 'v10':(0,2.5),
49 'v11':(0,1.5),
50 'v12':(0,0.5),
51 'v13':(0,-0.5),
52 'v14':(0,-1.5),
53 'v15':(0,-2.5),
54 'v16':(1,1),
55 'v17':(1,0),
56 'v18':(1,-1),
57 'v19':(2,1),
58 'v20':(2,0),
59 'v21':(2,-1)
60 }
61# 绘制DAG图
62plt.title('DNN for iris') #图片标题
63plt.xlim(-2.2, 2.2) #设置X轴坐标范围
64plt.ylim(-3, 3) #设置Y轴坐标范围
65nx.draw(
66 G,
67 pos = pos, # 点的位置
68 node_color = 'red', # 顶点颜色
69 edge_color = 'black', # 边的颜色
70 with_labels = True, # 显示顶点标签
71 font_size =10, # 文字大小
72 node_size =300 # 顶点大小
73 )
74# 显示图片
75plt.show()

可以看到,在代码中,通过pos字典已经规定好了每个神经元节点的位置。
接下来,需要对这个框架图进行更为细致地修改,需要修改的地方为:
- 去掉神经元节点的标签;
- 添加模型层的文字注释(比如Input layer)
其中,第二步的文字注释,我们借助opencv来完成。完整的Python代码如下:
1# -*- coding:utf-8 -*-
2import cv2
3import networkx as nx
4import matplotlib.pyplot as plt
6# 创建DAG
7G = nx.DiGraph()
9# 顶点列表
10vertex_list = ['v'+str(i) for i in range(1, 22)]
11# 添加顶点
12G.add_nodes_from(vertex_list)
14# 边列表
15edge_list = [
16 ('v1', 'v5'), ('v1', 'v6'), ('v1', 'v7'),('v1', 'v8'),('v1', 'v9'),
17 ('v2', 'v5'), ('v2', 'v6'), ('v2', 'v7'),('v2', 'v8'),('v2', 'v9'),
18 ('v3', 'v5'), ('v3', 'v6'), ('v3', 'v7'),('v3', 'v8'),('v3', 'v9'),
19 ('v4', 'v5'), ('v4', 'v6'), ('v4', 'v7'),('v4', 'v8'),('v4', 'v9'),
20 ('v5','v10'),('v5','v11'),('v5','v12'),('v5','v13'),('v5','v14'),('v5','v15'),
21 ('v6','v10'),('v6','v11'),('v6','v12'),('v6','v13'),('v6','v14'),('v6','v15'),
22 ('v7','v10'),('v7','v11'),('v7','v12'),('v7','v13'),('v7','v14'),('v7','v15'),
23 ('v8','v10'),('v8','v11'),('v8','v12'),('v8','v13'),('v8','v14'),('v8','v15'),
24 ('v9','v10'),('v9','v11'),('v9','v12'),('v9','v13'),('v9','v14'),('v9','v15'),
25 ('v10','v16'),('v10','v17'),('v10','v18'),
26 ('v11','v16'),('v11','v17'),('v11','v18'),
27 ('v12','v16'),('v12','v17'),('v12','v18'),
28 ('v13','v16'),('v13','v17'),('v13','v18'),
29 ('v14','v16'),('v14','v17'),('v14','v18'),
30 ('v15','v16'),('v15','v17'),('v15','v18'),
31 ('v16','v19'),
32 ('v17','v20'),
33 ('v18','v21')
34 ]
35# 通过列表形式来添加边
36G.add_edges_from(edge_list)
38# 指定绘制DAG图时每个顶点的位置
39pos = {
40 'v1':(-2,1.5),
41 'v2':(-2,0.5),
42 'v3':(-2,-0.5),
43 'v4':(-2,-1.5),
44 'v5':(-1,2),
45 'v6': (-1,1),
46 'v7':(-1,0),
47 'v8':(-1,-1),
48 'v9':(-1,-2),
49 'v10':(0,2.5),
50 'v11':(0,1.5),
51 'v12':(0,0.5),
52 'v13':(0,-0.5),
53 'v14':(0,-1.5),
54 'v15':(0,-2.5),
55 'v16':(1,1),
56 'v17':(1,0),
57 'v18':(1,-1),
58 'v19':(2,1),
59 'v20':(2,0),
60 'v21':(2,-1)
61 }
62# 绘制DAG图
63plt.title('DNN for iris') #图片标题
64plt.xlim(-2.2, 2.2) #设置X轴坐标范围
65plt.ylim(-3, 3) #设置Y轴坐标范围
66nx.draw(
67 G,
68 pos = pos, # 点的位置
69 node_color = 'red', # 顶点颜色
70 edge_color = 'black', # 边的颜色
71 font_size =10, # 文字大小
72 node_size =300 # 顶点大小
73 )
75# 保存图片,图片大小为640*480
76plt.savefig('DNN_sketch.png')
78# 利用opencv模块对DNN框架添加文字注释
80# 读取图片
81imagepath = 'DNN_sketch.png'
82image = cv2.imread(imagepath, 1)
84# 输入层
85cv2.rectangle(image, (85, 130), (120, 360), (255,0,0), 2)
86cv2.putText(image, "Input Layer", (15, 390), 1, 1.5, (0, 255, 0), 2, 1)
88# 隐藏层
89cv2.rectangle(image, (190, 70), (360, 420), (255,0,0), 2)
90cv2.putText(image, "Hidden Layer", (210, 450), 1, 1.5, (0, 255, 0), 2, 1)
92# 输出层
93cv2.rectangle(image, (420, 150), (460, 330), (255,0,0), 2)
94cv2.putText(image, "Output Layer", (380, 360), 1, 1.5, (0, 255, 0), 2, 1)
96# sofrmax层
97cv2.rectangle(image, (530, 150), (570, 330), (255,0,0), 2)
98cv2.putText(image, "Softmax Func", (450, 130), 1, 1.5, (0, 0, 255), 2, 1)
100# 保存修改后的图片
101cv2.imwrite('DNN.png', image)

一些图论算法
最短路径
函数调用:
1dijkstra_path(G, source, target, weight=‘weight’) ————求最短路径
2dijkstra_path_length(G, source, target, weight=‘weight’) ————求最短距离
4import networkx as nx
5import pylab
6import numpy as np
7#自定义网络
8row=np.array([0,0,0,1,2,3,6])
9col=np.array([1,2,3,4,5,6,7])
10value=np.array([1,2,1,8,1,3,5])
12print('生成一个空的有向图')
13G=nx.DiGraph()
14print('为这个网络添加节点...')
15for i in range(0,np.size(col)+1):
16 G.add_node(i)
17print('在网络中添加带权中的边...')
18for i in range(np.size(row)):
19 G.add_weighted_edges_from([(row[i],col[i],value[i])])
21print('给网路设置布局...')
22pos=nx.shell_layout(G)
23print('画出网络图像:')
24nx.draw(G,pos,with_labels=True, node_color='white', edge_color='red', node_size=400, alpha=0.5 )
25pylab.title('Self_Define Net',fontsize=15)
26pylab.show()
29'''
30Shortest Path with dijkstra_path
31'''
32print('dijkstra方法寻找最短路径:')
33path=nx.dijkstra_path(G, source=0, target=7)
34print('节点0到7的路径:', path)
35print('dijkstra方法寻找最短距离:')
36distance=nx.dijkstra_path_length(G, source=0, target=7)
37print('节点0到7的距离为:', distance)

输出:
1生成一个空的有向图
2为这个网络添加节点...
3在网络中添加带权中的边...
4给网路设置布局...
5画出网络图像:
6dijkstra方法寻找最短路径:
7节点0到7的路径: [0, 3, 6, 7]
8dijkstra方法寻找最短距离:
9节点0到7的距离为: 9
问题
本人在pycharm中运行下列程序:
1import networkx as nx
2import matplotlib.pyplot as plt
4G = nx.Graph() # 建立一个空的无向图G
5G.add_node('a') # 添加一个节点1
6G.add_nodes_from(['b', 'c', 'd', 'e']) # 加点集合
7G.add_cycle(['f', 'g', 'h', 'j']) # 加环
8H = nx.path_graph(10) # 返回由10个节点挨个连接的无向图,所以有9条边
9G.add_nodes_from(H) # 创建一个子图H加入G
10G.add_node(H) # 直接将图作为节点