Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Learn more about Collectives

Teams

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Learn more about Teams

hadoop mapreduce: java.lang.UnsatisfiedLinkError: org.apache.hadoop.util.NativeCodeLoader.buildSupportsSnappy()Z

Ask Question

I am trying to write a snappy block compressed sequence file from a map-reduce job. I am using hadoop 2.0.0-cdh4.5.0, and snappy-java 1.0.4.1

Here is my code:

package jinvestor.jhouse.mr;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Arrays;
import java.util.List;
import jinvestor.jhouse.core.House;
import jinvestor.jhouse.core.util.HouseAvroUtil;
import jinvestor.jhouse.download.HBaseHouseDAO;
import org.apache.commons.io.IOUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.LocatedFileStatus;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.RemoteIterator;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.SnappyCodec;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.NamedVector;
import org.apache.mahout.math.VectorWritable;
 * Produces mahout vectors from House entries in HBase.
 * @author Michael Scott Knapp
public class HouseVectorizer {
    private final Configuration configuration;
    private final House minimumHouse;
    private final House maximumHouse;
    public HouseVectorizer(final Configuration configuration,
            final House minimumHouse, final House maximumHouse) {
        this.configuration = configuration;
        this.minimumHouse = minimumHouse;
        this.maximumHouse = maximumHouse;
    public void vectorize() throws IOException, ClassNotFoundException, InterruptedException {
        JobConf jobConf = new JobConf();
        jobConf.setMapOutputKeyClass(LongWritable.class);
        jobConf.setMapOutputValueClass(VectorWritable.class);
        // we want the vectors written straight to HDFS,
        // the order does not matter.
        jobConf.setNumReduceTasks(0);
        Path outputDir = new Path("/home/cloudera/house_vectors");
        FileSystem fs = FileSystem.get(configuration);
        if (fs.exists(outputDir)) {
            fs.delete(outputDir, true);
        FileOutputFormat.setOutputPath(jobConf, outputDir);
        // I want the mappers to know the max and min value
        // so they can normalize the data.
        // I will add them as properties in the configuration,
        // by serializing them with avro.
        String minmax = HouseAvroUtil.toBase64String(Arrays.asList(minimumHouse,
                maximumHouse));
        jobConf.set("minmax", minmax);
        Job job = Job.getInstance(jobConf);
        Scan scan = new Scan();
        scan.addFamily(Bytes.toBytes("data"));
        TableMapReduceUtil.initTableMapperJob("homes", scan,
                HouseVectorizingMapper.class, LongWritable.class,
                VectorWritable.class, job);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);
        job.setOutputKeyClass(LongWritable.class);
        job.setOutputValueClass(VectorWritable.class);
        job.setMapOutputKeyClass(LongWritable.class);
        job.setMapOutputValueClass(VectorWritable.class);
        SequenceFileOutputFormat.setOutputCompressionType(job, SequenceFile.CompressionType.BLOCK);
        SequenceFileOutputFormat.setOutputCompressorClass(job, SnappyCodec.class);
        SequenceFileOutputFormat.setOutputPath(job, outputDir);
        job.getConfiguration().setClass("mapreduce.map.output.compress.codec", 
                SnappyCodec.class, 
                CompressionCodec.class);
        job.waitForCompletion(true);

When I run it I get this:

java.lang.Exception: java.lang.UnsatisfiedLinkError: org.apache.hadoop.util.NativeCodeLoader.buildSupportsSnappy()Z
    at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:401)
Caused by: java.lang.UnsatisfiedLinkError: org.apache.hadoop.util.NativeCodeLoader.buildSupportsSnappy()Z
    at org.apache.hadoop.util.NativeCodeLoader.buildSupportsSnappy(Native Method)
    at org.apache.hadoop.io.compress.SnappyCodec.checkNativeCodeLoaded(SnappyCodec.java:62)
    at org.apache.hadoop.io.compress.SnappyCodec.getCompressorType(SnappyCodec.java:127)
    at org.apache.hadoop.io.compress.CodecPool.getCompressor(CodecPool.java:104)
    at org.apache.hadoop.io.compress.CodecPool.getCompressor(CodecPool.java:118)
    at org.apache.hadoop.io.SequenceFile$Writer.init(SequenceFile.java:1169)
    at org.apache.hadoop.io.SequenceFile$Writer.<init>(SequenceFile.java:1080)
    at org.apache.hadoop.io.SequenceFile$BlockCompressWriter.<init>(SequenceFile.java:1400)
    at org.apache.hadoop.io.SequenceFile.createWriter(SequenceFile.java:274)
    at org.apache.hadoop.io.SequenceFile.createWriter(SequenceFile.java:527)
    at org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat.getSequenceWriter(SequenceFileOutputFormat.java:64)
    at org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat.getRecordWriter(SequenceFileOutputFormat.java:75)
    at org.apache.hadoop.mapred.MapTask$NewDirectOutputCollector.<init>(MapTask.java:617)
    at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:737)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:338)
    at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:233)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
    at java.util.concurrent.FutureTask.run(FutureTask.java:262)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:744)

If I comment out these lines then my test passes:

SequenceFileOutputFormat.setOutputCompressionType(job, SequenceFile.CompressionType.BLOCK);
        SequenceFileOutputFormat.setOutputCompressorClass(job, SnappyCodec.class);
        job.getConfiguration().setClass("mapreduce.map.output.compress.coded", 
                SnappyCodec.class, 
                CompressionCodec.class);

However, I really want to use snappy compression in my sequence files. Can somebody please explain to me what I am doing wrong?

I am not using LZO compression afaik, just snappy. I am running the job from a unit test. – msknapp Mar 3, 2014 at 15:23 True, my mistake. However, you need to set the property java.library.path. For example: -Djava.library.path=/lib/hadoop/native – Chiron Mar 3, 2014 at 15:25 I create my configuration using it's default no-arg constructor, and pass that as a constructor-arg to my HouseVectorizer. Then I call the vectorize method. I am running this on cloudera's pre-built cdh 4.5 VM – msknapp Mar 3, 2014 at 15:26 I don't think I need to set java.library.path here, like I said this whole thing passes if I just comment out the lines to do snappy compression. I am using maven to control dependencies, so that is how the hadoop stuff is getting on my classpath. – msknapp Mar 3, 2014 at 15:27
  • Ensure that LD_LIBRARY_PATH and JAVA_LIBRARY_PATH contains the native directory path having the libsnappy.so** files.
  • Ensure that LD_LIBRARY_PATH and JAVA_LIBRARY path have been exported in the SPARK environment(spark-env.sh).
  • For example I use Hortonworks HDP and I have the following configuration in my spark-env.sh

    export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:/usr/hdp/2.2.0.0-2041/hadoop/lib/native
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/hdp/2.2.0.0-2041/hadoop/lib/native
    export SPARK_YARN_USER_ENV="JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH,LD_LIBRARY_PATH=$LD_LIBRARY_PATH"
                    I had a similar issue.Mine was a java aplication.  Adding native lib path to LD_LIBRARY_PATH  helped to resolve the issue. Did export LD_LIBRARY_PATH = $LD_LIBRARY_PATH :/path/to/hadoop/lib/native. Then did java -jar <application.jar>.  Thanks a lot!!
    – sunitha
                    May 9, 2018 at 14:35
                    This did not resolve the issue for me. Even after exporting the libsnappy paths to the above two library paths, the same error remains.
    – ely
                    Aug 27, 2018 at 15:03
    

    check your core-site.xml and mapred-site.xml they should contain correct properties and path of the folder with libraries

    core-site.xml

    <property>
      <name>io.compression.codecs</name>
    <value>org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.SnappyCodec</value>
    </property>
    

    mapred-site.xml

     <property>
          <name>mapreduce.map.output.compress</name>
          <value>true</value>
        </property>
        <property>
         <name>mapred.map.output.compress.codec</name>  
         <value>org.apache.hadoop.io.compress.SnappyCodec</value>
        </property>
        <property>
          <name>mapreduce.admin.user.env</name>
          <value>LD_LIBRARY_PATH=/usr/hdp/2.2.0.0-1084/hadoop/lib/native</value>
        </property>
    

    LD_LIBRARY_PATH - has to contain path of libsnappy.so .

    My problem was that my JRE did not contain the appropriate native libraries. This may or may not be because I switched the JDK from cloudera's pre-built VM to JDK 1.7. The snappy .so files are in your hadoop/lib/native directory, the JRE needs to have them. Adding them to the classpath did not seem to resolve my issue. I resolved it like this:

    $ cd /usr/lib/hadoop/lib/native
    $ sudo cp *.so /usr/java/latest/jre/lib/amd64/
    

    Then I was able to use the SnappyCodec class. Your paths may be different though.

    That seemed to get me to the next problem:

    Caused by: java.lang.RuntimeException: native snappy library not available: SnappyCompressor has not been loaded.

    Still trying to resolve that.

    Guys copying those files will result in a problematic situation once you upgrade the CDH version. You need to copy them with every CDH upgrade and believe me you would have forgotten that you copied those files by than. The proper way is to work with LD_LIBRARY_PATH! You need to make sure it has the correct value on the Gateway instances. At CDH, it might be that you have overridden it. The defaults are normally fine there. When doing this remotely you can user java -cp … then you set -Djava.library.path. – Niko Jan 14, 2015 at 20:30

    I you need all files, not only the *.so ones. Also ideally you would include the folder to your path instead of copying the libs from there. You need to restart the MapReduce service after this, so that the new libraries are taken and can be used.

    In my case, you may check the hive-conf files : mapred-site.xml , and check the key: mapreduce.admin.user.env 's value,

    I tested it in a new datanode, and received unlinked-buildSnappy error on the machine where is no native dependencies ( libsnappy.so , etc)

    Thanks for contributing an answer to Stack Overflow!

    • Please be sure to answer the question. Provide details and share your research!

    But avoid

    • Asking for help, clarification, or responding to other answers.
    • Making statements based on opinion; back them up with references or personal experience.

    To learn more, see our tips on writing great answers.