:
twitter line
研究生: 鄭楷軒
研究生(外文): Kai-Xuan Zheng
論文名稱: 評估施用植物渣粕肥料蓖麻粕釋放之蓖麻毒素蓖麻鹼對土壤環境和作物生長之影響
論文名稱(外文): Evaluation of the influence of toxic ricinine released from organic fertilizer castor cake on soil and crop growth
指導教授: 莊雅惠 莊雅惠引用關係 陳珮臻
指導教授(外文): Ya-Hui Chuang Pei-Chen Chen
口試委員: 沈佛亭 林永鴻 劉政樺
口試委員(外文): Fo-Ting Shen Yong-Hong Lin Cheng-Hua Liu
口試日期: 2022-03-09
學位類別: 碩士
校院名稱: 國立中興大學
系所名稱: 植物醫學暨安全農業碩士學位學程
學門: 農業科學學門
學類: 植物保護學類
論文種類: 學術論文
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 145
中文關鍵詞: 蓖麻粕 細菌功能多樣性 細菌物種多樣性 高解析液相層析串聯質譜儀 南方根瘤線蟲 植物吸收 蓖麻鹼
外文關鍵詞: castor cake bacterial functional diversity bacterial species diversity LC-QTOF/MS Meloidogyne incogita plant uptake ricinine
相關次數:
  • 被引用 被引用:0
  • 點閱 點閱:2361
  • 評分 評分:
  • 下載 下載:0
  • 收藏至我的研究室書目清單 書目收藏:0
蓖麻粕 (castor cake) 為蓖麻植物之蓖麻籽經壓榨提油後之副產品,每年因蓖麻油的榨取使得蓖麻粕在全世界的生產量可達1,383,000 噸以上。蓖麻粕具有高含量的氮可供植物生長所需,又其為商品製程之廢棄物,因此價格低廉,再加上它含有可作為農藥的活性成分如蓖麻毒蛋白與蓖麻鹼,可以兼具殺蟲、殺菌與殺線蟲之作用。但蓖麻毒素是否會對環境中的其他生物如軟體動物、微生物族群甚至是水生生物造成毒害卻還尚未有明確的研究。且這些毒素是否會藉由作物吸收而累積在作物中,進而進入食物鏈而對人類健康造成潛在風險也有待研究與評估。因此,為了更了解在田間施用蓖麻粕之效益與風險評估,本研究分為三部分試驗探討蓖麻粕對土壤環境和作物生長之影響,以提供農民更好的蓖麻粕使用策略。第一部分以蓖麻鹼為分析目標物,以盆栽試驗及水耕系統進行釋放試驗、淋洗試驗及植物吸收試驗探討蓖麻鹼在土壤環境中的分佈及蓖麻鹼被作物吸收與累積之能力。固體與液體樣品中的蓖麻鹼萃取與分析分別使用快速萃取法QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) 及固相萃取法 (solid-phase extraction, SPE)進行萃取,再透過高解析液相層析串聯質譜儀 (LC-QTOF/MS) 進行蓖麻鹼的定量分析。第二部分以萵苣為作物進行盆栽試驗,探討蓖麻粕對土壤無機氮含量及作物生長之影響。第三部分為探討蓖麻粕對土壤微生物之影響,首先以蓖麻粕浸泡液、蓖麻鹼分別探討其對南方根瘤線蟲 (Meloidogyne incogita) 卵孵化率及線蟲致死率之影響,再以盆栽試驗測試蓖麻粕對南方根瘤線蟲結根瘤能力之影響。另外以培養基測試蓖麻鹼對病原菌Rhizoctonia solani及特定有益細菌生長抑制能力,最後再以Biolog Ecoplate分析方法及16S rDNA之分析探討蓖麻粕對土壤細菌功能及物種多樣性之影響。本研究使用之大茂特選蓖麻粕,經過分析後測得其平均蓖麻鹼濃度約為1093 mg kg-1,且相較於在土壤中施用蓖麻粕後第七天及第十四天,在第一天即可以在土壤、土壤孔隙水中級土壤淋洗液中檢測到最高濃度的蓖麻鹼,總和大約為蓖麻粕中70%的蓖麻鹼含量。實驗結果亦顯示蓖麻鹼可以被萵苣吸收且累積在地上部,因此若在施用蓖麻粕當天栽種作物時,作物中所累積之蓖麻鹼含量即可能對人類健康造成潛在危害。而土壤中的無機氮濃度在土壤中施用蓖麻粕後七天內大幅增加,但隨著施用時間的增加土壤無機氮濃度變化量在施用蓖麻粕後七天到十四天之間反而有減緩的趨勢。此外,蓖麻粕對於土壤環境微生物之影響試驗結果,顯示蓖麻粕雖然可以有效抑制M. incogita的生長且不會抑制特定有益細菌生長與增加土壤中細菌的功能與物種多樣性,但是卻會改變土壤細菌功能及優勢物種。再者,蓖麻粕在土壤中會促進Burkholderiaceae細菌類群的增長。綜合本研究結果,建議農民除了不可施用過多的蓖麻粕,也需在蓖麻粕施用十四天後再進行作物栽種,如此除了可以降低植物從土壤中吸收蓖麻鹼的含量以降低人類從飲食上攝取到蓖麻鹼的風險,也可以降低蓖麻粕對作物生長與環境生態造成的負面影響。
Castor cake, a by-product generated from castor oil extraction and with over 1,383, 000 tons of annual production, has high nitrogen content, and therefore, it has been widely used as organic fertilizer for supporting plant growth and reducing the cost of waste disposal. Additionally, castor cake contains active ingredients/toxins such as ricin and ricinine, both are insecticidal, bactericidal, and nematicidal, which makes castor cake used as a pesticide as well. However, there is a few studies of the impact of the toxins to mollusks, microorganisms, or even aquatic organisms as well as crop and human health via food chain. To evaluate the effects of castor cake to soil environment and crop growth, in this study, we first conducted a release, leaching, and plant uptake experiments using pot and hydroponic systems to evluate the distribution and accumulation of toxin ricinine in soil and crops, respectively. Ricinine in solid samples is extracted by QuEChERS (quick, easy, cheap, effective, rugged and safe) method, while in liquid samples, it is extracted and concentrated through solid-phase extraction procedure followed by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF/MS) analysis. Second, we planted lettuce in soil pots added with castor cake to determine the effect of castor cake to soil inorganic nitrogen content and lettuce growth. Last, we used castor cake extracts and different ricinine concentration to understand their effects to egg hatching rate and nematode lethality of M. incogita. Moreover, we discussed the nodulation ability of M. incognita through a pot setting. We also used a culture medium to test the inhibitory ability of ricinine to the growth of pathogen R. solani and specific beneficial bacteria as well as Biolog Ecoplate analysis and 16S rDNA analysis to evaluate the effect of castor cake on soil bacterial metabolic and species diversity. The average ricinine concentration of the castor cake used in this study was around 1093 mg kg-1. After 1 day of castor cake application, ricinine was with the highest concentration comparing to the days of 7 and 14 in soil, soil pore water and leachates, approximately 70% of the ricininie content in castor cake. The plant uptake experiment showed ricinine can be accumulated in lettuce shoots, posing risk to human health. The inorganic nitrogen concentration in the soil increased apparently within 7 days but slightly decreased from 7 to 14 days after castor application. Castor cake did inhibit the growth of M. incogita while it was with no effect on specific beneficial bacteria and enhance the metabolic and species diversity of soil bacteria. However, castor cake changed the function and dominant species of soil bacteria. Additionally, castor cake promoted the growth of Burkholderiaceae spp. bacteria in the soil. Overall, according to the results obtained from this study, we recommend farmers to apply appropriate rate for castor cake and to start planting after 14 days of castor cake application. This could not only reduce the risk of human exposed to ricinine through consumption of crops containing ricinine, but also alleviate adverse effects on crop growth and soil environment.
摘要 i
Abstract iii
目次 v
表目次 ix
圖目次 x
第一章、前人研究 1
1.1 近代農業型態之轉變 1
1.2 蓖麻粕 1
1.2.1 蓖麻粕簡介 1
1.2.2 蓖麻粕對土壤與作物之影響 2
1.2.3 蓖麻粕防治病蟲害之能力 4
1.2.4 蓖麻粕對環境微生物之影響 11
1.2.5 蓖麻粕中蓖麻毒蛋白與蓖麻鹼之毒性與致毒機制 12
1.3 蓖麻鹼之萃取與分析方法 14
1.4 土壤細菌多樣性分析方法 17
1.5. 擬解決問題 18
1.6 目的 18
第二章、材料與方法 19
2.1試驗架構 19
2.2試驗材料與化學品 21
2.2.1 試驗材料 21
2.2.2 試驗藥品 21
2.2.3 試驗土壤 22
2.2.4 蓖麻粕 24
2.3蓖麻鹼分析方法建立及應用 25
2.3.1 方法之建立 25
2.3.2 方法應用 30
2.4評估蓖麻粕中ricinine在土壤中的流佈 32
2.4.1 釋放試驗 32
2.4.2 淋洗試驗 34
2.4.3 吸附試驗 34
2.5評估ricinine在萵苣中的累積及分佈 36
2.5.1 水耕試驗 36
2.5.2 盆栽試驗 39
2.6評估施用蓖麻粕對土壤及作物中植物生長必需元素之影響 40
2.6.1 土壤分析 40
2.6.2 植體分析 41
2.7評估蓖麻粕防治南方根瘤線蟲(Meloidogyne incognita)之能力 42
2.7.1 南方根瘤線蟲之培養 42
2.7.2 蓖麻粕浸泡液對南方根瘤線蟲卵孵化率之影響 42
2.7.3 Ricinine對南方根瘤線蟲致死率之影響 43
2.7.4 蓖麻粕對南方根瘤線蟲結根瘤之影響 43
2.8 評估蓖麻粕對土壤微生物族群之影響 44
2.8.1 Ricinine對特定微生物之抑制能力 44
2.8.2 蓖麻粕對土壤細菌功能多樣性之影響 47
2.8.3 蓖麻粕對土壤細菌物種多樣性之影響 47
2.9 統計分析 49
第三章、結果與討論 50
3.1 蓖麻鹼(Ricinine)萃取與分析方法確效 50
3.1.1 SPE方法 50
3.1.2 QuEChERS方法 50
3.2 市售蓖麻粕產品ricinine含量 53
3.2.1 供試蓖麻粕的基本性質 53
3.2.2 市售蓖麻粕產品ricinine含量 54
3.3 蓖麻粕中ricinine在土壤的流佈 56
3.3.1 Ricinine自蓖麻粕釋放至土壤之情形 56
3.3.2 土壤施用蓖麻粕後ricinine在土壤中之流佈 68
3.3.3 土壤對ricinine之吸附 73
3.4 植物吸收與累積ricinine之能力 75
3.4.1 水耕萵苣對ricinine之吸收與累積 75
3.4.2 土壤中萵苣對ricinine之吸收與累積 80
3.5 蓖麻粕對土壤與植體中植物生長必需氮元素濃度之影響 82
3.5.1 對土壤無機氮元素濃度之影響 82
3.5.2 對植體內植物全氮含量之影響 85
3.5.3 土壤施用蓖麻粕對植物生長之影響 86
3.6 蓖麻粕對南方根瘤線蟲之影響 88
3.6.1 蓖麻粕浸泡液對線蟲卵孵化率之影響 88
3.6.2 Ricinine對線蟲致死率之影響 90
3.6.3 蓖麻粕對空心菜結根瘤數之影響 92
3.7 Ricinine對特定微生物之影響 94
3.8 蓖麻粕對土壤細菌功能多樣性之影響 100
3.8.1 不同蓖麻粕施用量對土壤細菌群落代謝潛勢變化 100
3.8.2 不同蓖麻粕施用量對功能多樣性指數分析 103
3.8.3 不同蓖麻粕用量對細菌碳源利用程度分析 107
3.9 蓖麻粕對土壤細菌物種多樣性之影響 114
3.9.1 不同蓖麻粕施用量對物種多樣性指數分析 114
3.9.2 不同蓖麻粕施用量對土壤物種群落變化 116
第四章、結論 120
第五章、參考資料 121
附錄 138
王鐘和, 2018. 有機農業的內涵與生產技術. 臺中區農業改良場特刊, 107-123.
行政院農委會農糧署。2021。「有機農業適用肥料推廣計畫」補助品牌一覽表(111.01.17更新)。(資料來源http://www.afa.gov.tw ,查閱日期:2021/2/19)
行政院農委會農糧署。2021。110年度國產有機質肥料品牌推薦名單,植物渣粕肥料(5-01)(111.2.15更新)。(資料來源http://www.afa.gov.tw , 查閱日期2021/2/24)
行政院農委會農糧署。2021。肥料檢驗項目之檢驗方法。(資料來源:https://www.afa.gov.tw/cht/index.php?code=list&flag=detail&ids=740&article_id=5725,查閱日期:110/3/1)
行政院農業委員會、中華土壤肥料學會。土壤分析手冊。第二版。
行政院農業委員會、中華土壤肥料學會。民國95年。肥料要覽。第四版。
行政院農業委員會、台南區農業改良場。2008。葉萵苣良好農業規範。
吳則焰, 林文雄, 陳志芳, 方長旬, 張志興, 吳林坤, 周明明, 陳婷, 2013. 中亞熱帶惠蓀森林土壤微生物群落多樣性隨海拔梯度的變化. 植物生態學報 37, 397.
李健捀, 蔡宜峰, 2010. 有機農業. 臺中區農業改良場特刊, 214-216.
林雲康, 廖英男, 陳鐶斌, 廖宜倫, 2015. 栽培密度及肥料量對蓖麻產量之影響. 臺中區農業改良場研究彙報, 19-28.
薛彥萍, 史成章, 2005. 以 β-catenin 為中心的 Wnt 信號通路在消化道腫瘤發生中的作用. 世界華人消化雜誌 13, 2858-2861.
譚增偉, 劉禎祺, 陳桂暖, 2005. 土壤肥力與合理化施肥. 農業試驗所特刊第 121 號. 農業試驗所.
Abada, E., Al-Fifi, Z., Osman, M., 2019. Bioethanol production with carboxymethylcellulase of Pseudomonas poae using castor bean (Ricinus communis L.) cake. Saudi J Biol Sci 26, 866-871.
Abd-Talib, N., Mohd-Setapar, S.H., Khamis, A.K., 2014. The benefits and limitations of methods development in solid phase extraction: Mini review. Jurnal Teknologi 69.
Adomako, J., 2007. Management of Root Knot Nematodes (Meloidogyne spp.) on tomato with Castor Bean (Ricinus communis) Aqueous Extracts.
Ahmad, R., Jilani, G., Arshad, M., Zahir, Z.A., Khalid, A., 2007. Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Annals of microbiology 57, 471-479.
Al-bajajy, N.A., Al-gareeb, A.I., Al-hafied, A.A.A., 2012. Antibacterial activity of ricinnus communis: In vitro study. Iraqi Journal of Science 53, 524-529.
Amoabeng, B.W., Gurr, G.M., Gitau, C.W., Nicol, H.I., Munyakazi, L., Stevenson, P.C., 2013. Tri-trophic insecticidal effects of African plants against cabbage pests. PLOS ONE 8, e78651.
Audi, J., Belson, M., Patel, M., Schier, J., Osterloh, J., 2005. Ricin poisoning. JAMA. Journal of the American Medical Association 294, 2342-2351.
Balázs, H.E., Schmid, C.A., Cruzeiro, C., Podar, D., Szatmari, P.-M., Buegger, F., Hufnagel, G., Radl, V., Schröder, P., 2021. Post-reclamation microbial diversity and functions in hexachlorocyclohexane (HCH) contaminated soil in relation to spontaneous HCH tolerant vegetation. Science of The Total Environment 767, 144653.
Barber, S.A., 1984. Soil nutrient bioavailability. A mechanistic approach. Soil nutrient bioavailability. A mechanistic approach.
Barbosa, L.F.S., Santos, A.C.d.S., Diniz, A.G., Alves, A.L., Oliveira, A.F.M., Costa, A.F., Tiago, P.V., 2021. Entomopathogenicity of fungi in combination with Ricinus communis extract for the control of Aleurocanthus woglumi. Entomologia Experimentalis et Applicata 169, 838-847.
Barnes, D.J., Baldwin, B.S., Braasch, D.A., 2009. Ricin accumulation and degradation during castor seed development and late germination. Industrial Crops and Products 30, 254-258.
Bellafiore, S., Shen, Z., Rosso, M.N., Abad, P., Shih, P., Briggs, S.P., 2008. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLOS Pathogens 4, e1000192.
Bernardet, J.F., Bowman, J.P., 2006. The genus flavobacterium. The prokaryotes 7, 481-531.
Berry, C., 2012. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of invertebrate pathology 109, 1-10.
Bhargav, H., Shastri, S.D., Poornav, S., Darshan, K., Nayak, M.M., 2016. Measurement of the zone of inhibition of an antibiotic. 2016 IEEE 6th International Conference on Advanced Computing (IACC). IEEE, pp. 409-414.
Bigi, M.F., Torkomian, V.L., de Groote, S.T., Hebling, M.J., Bueno, O.C., Pagnocca, F.C., Fernandes, J.B., Vieira, P.C., da Silva, M.F., 2004. Activity of Ricinus communis (Euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Management Science 60, 933-938.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology 37, 852-857.
Bradberry, S.M., Dickers, K.J., Rice, P., Griffiths, G.D., Vale, J.A., 2003. Ricin poisoning. Toxicological Reviews 22, 65-70.
Cai, M., Chen, X., Wei, X., Pan, S., Zhao, Y., Jin, M., 2014. Dispersive solid-phase extraction followed by high-performance liquid chromatography/tandem mass spectrometry for the determination of ricinine in cooking oil. Food Chemistry 158, 459-465.
Cain, M.L., Subler, S., Evans, J.P., Fortin, M.-J., 1999. Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 118, 397-404.
Carolina, A., Herliyana, E., Sulastri, H., 2019. Antifungal activity of castor (Ricinus communis L.) leaves methanolic extract on Aspergillus niger. International Food Research Journal 26, 595-598.
Carter, L.J., Harris, E., Williams, M., Ryan, J.J., Kookana, R.S., Boxall, A.B., 2014. Fate and uptake of pharmaceuticals in soil-plant systems. Journal of Agricultural and Food Chemistry 62, 816-825.
Chang, H.M., But, P.P.H., Yao, S.C., 1987. Pharmacology and Applications of Chinese Materia Medica. World Scientific.
Chaudhary, K.K., Kaul, R.K., 2013. Efficacy of Pasteuria penetrans and various oil seed cakes in management of Meloidogyne incognita in chilli pepper (Capsicum annum L.). Journal of Agricultural Science and Technology 15, 617-626.
Chen, B., Liu, E., Tian, Q., Yan, C., Zhang, Y., 2014. Soil nitrogen dynamics and crop residues. A review. Agronomy for sustainable development 34, 429-442.
Chen, W.C., Ko, C.H., Su, Y.S., Lai, W.A., Shen, F.T., 2021. Metabolic potential and community structure of bacteria in an organic tea plantation. Applied Soil Ecology 157.
Chen, X.H., Jin, M.C., 2009. Qualitative analysis of trace ricinine in edible vegetable oil by high-performance liquid chromatography coupled with diode array detector and ion trap mass spectrometry. Chinese Journal of Health Laboratory Technology 10.
Chuang, Y.-H., Zhang, Y., Zhang, W., Boyd, S.A., Li, H., 2015. Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. Journal of Chromatography A 1404, 1-9.
Chuang, Y.H., Liu, C.H., Sallach, J.B., Hammerschmidt, R., Zhang, W., Boyd, S.A., Li, H., 2019. Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. Environment International 131, 104976.
Coopman, V., De Leeuw, M., Cordonnier, J., Jacobs, W., 2009. Suicidal death after injection of a castor bean extract (Ricinus communis L.). Forensic Science International 189, e13-20.
Corwin, D.L., Rhoades, J.D., 1982. An Improved Technique for Determining Soil Electrical Conductivity-Depth Relations from Above-ground Electromagnetic Measurements. Soil Science Society of America Journal 46, 517-520.
de Kok Food, A., Product, C., VWA, S.A., Fernández-Alba, A.R., Gamón, M., Valenciana, G., Lippold, S.D.R., Freiburg, C., Malato, G.M.O., Medina, M.P., 2007. Method validation and quality control procedures for pesticide residues analysis in food and feed.
De Lannoy, G., 2001. Vegetables: crop production in Tropical Africa. Directorate General for Intl. Cooperation, Brussels, Belgium, 403-511.
de Melo Cazal, C., Batalhão, J.R., de Cássia Domingues, V., Bueno, O.C., Rodrigues Filho, E., Forim, M.R., da Silva, M.F.G.F., Vieira, P.C., Fernandes, J.B., 2009. High-speed counter-current chromatographic isolation of ricinine, an insecticide from Ricinus communis. Journal of Chromatography A 1216, 4290-4294.
de Moraes, M., Lordello, L., 1977. Use of castor bean cakes in nematode control in coffee nursery soil [Coffea arabica; Meloidogyne exigua; Brazil]. Publicacao-Sociedade Brasileira de Nematologia (Brazil). no. 2.
Destandau, E., Michel, T., Elfakir, C., 2013. Microwave-assisted extraction. Natural Product Extraction: Principles and Applications, 113.
Di Bonito, M., Breward, N., Crout, N., Smith, B., Young, S., 2008. Overview of selected soil pore water extraction methods for the determination of potentially toxic elements in contaminated soils: operational and technical aspects. Environmental Geochemistry. Elsevier, pp. 213-249.
Dong, L., Li, X., Huang, C., Lu, Q., Li, B., Yao, Y., Liu, T., Zuo, Y., 2018. Reduced Meloidogyne incognita infection of tomato in the presence of castor and the involvement of fatty acids. Scientia Horticulturae 237, 169-175.
Duchartre, Y., Kim, Y.M., Kahn, M., 2016. The Wnt signaling pathway in cancer. Critical Reviews in Oncology/Hematology 99, 141-149.
Faizi, S., Fayyaz, S., Bano, S., Iqbal, E.Y., Lubna, Siddiqi, H., Naz, A., 2011. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: structure-activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. Journal of Agricultural and Food Chemistry 59, 9080-9093.
Ferraz, A.C., Angelucci, M.E.M., Da Costa, M.L., Batista, I.R., De Oliveira, B.H., Da Cunha, C., 1999. Pharmacological Evaluation of Ricinine, a Central Nervous System Stimulant Isolated from Ricinus communis. Pharmacology Biochemistry and Behavior 63, 367-375.
Flores-Macías, A., Vela-Correa, G., Rodríguez-Gamiño, M., Akhtar, Y., Figueroa-Brito, R., Pérez-Moreno, V., Rico-Rodríguez, M.A., Ramos-López, M.A., 2016. Effect of potassium nitrate on the production of ricinine by Ricinus communis and its insecticidal activity against Spodoptera frugiperda. Revista Fitotecnia Mexicana 39, 41-47.
Franco, D.S.P., Cunha, J.M., Dortzbacher, G.F., Dotto, G.L., 2017. Adsorption of Co(II) from aqueous solutions onto rice husk modified by ultrasound assisted and supercritical technologies. Process Safety and Environmental Protection 109, 55-62.
Frostegård, A., Bååth, E., 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of soils 22, 59-65.
Gahukar, R.T., 2017. A review of castor-derived products used in crop and seed protection. Phytoparasitica 45, 655-666.
Galbieri, R., Kobayasti, L., Albuquerque, M.C.F., de Sá, R.O., Dutra, S.G., Boldt, A.S., Timper, P., 2021. Castor bean as an option for Meloidogyne incognita management in cotton. International Journal of Pest Management, 1-9.
Gangwar, D.P., Baskar, M., 2019. Texture determination of soil by hydrometer method for forensic purpose.
García‐Martínez, S., Grau, A., Agulló, E., Bustamante, M.Á., Paredes, C., Moral, R., Ruiz, J.J., 2009. Use of Composts Derived from Winery Wastes in Tomato Crop. Communications in Soil Science and Plant Analysis 40, 445-452.
Guo, P., Wei, D., Wang, J., Dong, G., Zhang, Q., Yang, M., Kong, L., 2015. Chronic toxicity of crude ricinine in rats assessed by 1H NMR metabolomics analysis. RSC Advances 5, 27018-27028.
Guo, Z., Han, J., Li, J., Xu, Y., Wang, X., 2019. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLOS ONE 14, e0211163.
Gupta, A.P., Antil, R.S., Narwal, R.P., 2004. Utilization of deoiled castor cake for crop production. Archives of Agronomy and Soil Science 50, 389-395.
Hamelin, E.I., Johnson, R.C., Osterloh, J.D., Howard, D.J., Thomas, J.D., 2012. Evaluation of Ricinine, a Ricin Biomarker, from a Non-Lethal Castor Bean Ingestion. Journal of Analytical Toxicology 36, 660–662.
Hani, H., 1996. Soil analysis as a tool to predict effects on the environment. Communications in soil science and plant analysis 27, 289-306.
Harish, S., Saravanakumar, D., Radjacommare, R., Ebenezar, E.G., Seetharaman, K., 2007. Use of plant extracts and biocontrol agents for the management of brown spot disease in rice. BioControl 53, 555-567.
Hussey, R., Janssen, G., 2002. Root-knot nematodes: Meloidogyne species. Plant resistance to parasitic nematodes, 43-70.
Ibekwe, H.N., Ogbu, J. U., Uwalaka, O. A., Ngbede, S. O., & Onyegbule, U. N., 2014. Efficacy of plant derived insecticides for control of pests of garden egg (Solanum spp.) in southeastern Nigeria. nternational Journal of Scientific & Technology Research 3, 371-376.
Iqbal, J., Ali, H., Hassan, M.W., Jamil, M., 2015. Evaluation of indigenous plant extracts against sucking insect pests of okra crop. Pakistan Entomologist 37, 39-44.
Iqbal, J., Zaib, S., Farooq, U., Khan, A., Bibi, I., Suleman, S., 2012. Antioxidant, antimicrobial, and free radical scavenging potential of aerial parts of Periploca aphylla and Ricinus communis. International Scholarly Research Notices 2012.
Irget, M.E., Anaç, D., Kiliç, C.C., Tepecik, M., 2010. Determination of Nitrogen Rates in Olive (Olea europaea cv Memecik). Asian Journal of Chemistry 22, 1435.
Janati, S., Houari, A., Wifaya, A., Essarioui, A., Mimouni, A., Hormatallah, A., Sbaghi, M., Dababat, A.A., Mokrini, F., 2018. Occurrence of the Root-Knot Nematode species in Vegetable Crops in Souss Region of Morocco. Plant Pathology Journal 34, 308-315.
Johnsen, K., Jacobsen, C., Torsvik, V., Sørensen, J., 2001. Pesticide effects on bacterial diversity in agricultural soils - a review. Biology and Fertility of Soils 33, 443-453.
Johnson, R.C., Lemire, S.W., Woolfitt, A.R., Ospina, M., Preston, K.P., Olson, C.T., Barr, J.R., 2005. Quantification of ricinine in rat and human urine: a biomarker for ricin exposure. Journal of Analytical Toxicology 29, 149-155.
Kodjo, T.A., Gbenonchi, M., Sadate, A., Homi, A., Dieudonne, G.Y.M., Komla, S., 2011. Bio-insecticidal effects of plant extracts and oil emulsions of Ricinus communis L. (Malpighiales: Euphorbiaceae) on the diamondback moth, Plutella xylostella L. (Lepidoptera: Pluttellidae) under laboratory and semi-field conditions. Journal of Applied Biosciences 43, 2899-2914.
Lawrence, K., Hagan, A., Norton, R., Hu, J., Faske, T., Hutmacher, R., Muller, J., Small, I., Grabau, Z., Kemerait, B., 2020. Cotton disease loss estimate committee report. Beltwide Cotton Conference, 117–119.
Le, B., Golokhvast, K.S., Yang, S.H., Sun, S., 2019. Optimization of Microwave-Assisted Extraction of Polysaccharides from Ulva pertusa and Evaluation of Their Antioxidant Activity. Antioxidants (Basel) 8.
Lima, B.M.F.V., Moreira, J.O.T., Aragão, C.A., 2013. Avaliação de extratos vegetais no controle de mosca-branca, Bemisia tabaci biótipo B em abóbora Revista Ciência Agronômica 44, 622-627.
Lima, R.L., Severino, L.S., Sampaio, L.R., Sofiatti, V., Gomes, J.A., Beltrão, N.E., 2011. Blends of castor meal and castor husks for optimized use as organic fertilizer. Industrial Crops and Products 33, 364-368.
LiPuma, J.J., Mahenthiralingam, E., 1999. Commercial use of Burkholderia cepacia. Emerging Infectious Diseases 5, 305.
Liu, H., Zhang, G., Huangfu, C., Yang, D., Zhao, J., 2016. Effects of Different Tillage Methods on Functional Diversity of Soil Microbial Community. Hans Journal of Agricultural Sciences 06, 1-9.
Lomash, V., Parihar, S., Jain, N., Katiyar, A., 2010. Effect of Solanum nigrum and Ricinus communis extracts on histamine and carrageenan-induced inflammation in the chicken skin. Cellular and Molecular Biology 56, 1239-1251.
Maron, P.A., Sarr, A., Kaisermann, A., Leveque, J., Mathieu, O., Guigue, J., Karimi, B., Bernard, L., Dequiedt, S., Terrat, S., Chabbi, A., Ranjard, L., 2018. High Microbial Diversity Promotes Soil Ecosystem Functioning. Applied and Environmental Microbiology 84.
McSpadden Gardener, B.B., 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94, 1252-1258.
Mello, G.A.B.d., Carvalho, D.F.d., Medici, L.O., Silva, A.C., Gomes, D.P., Pinto, M.F., 2018. Organic cultivation of onion under castor cake fertilization and irrigation depths. Acta Scientiarum. Agronomy 40.
Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J.H., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097-1100.
Mohamed, A., Hamza, A., Derbalah, A., 2016. Recent approaches for controlling downy mildew of cucumber under greenhouse conditions. Plant Protection Science 52, 1-9.
Nebo, L., Varela, R.M., Fernandes, J.B., Palma, M., 2019. Microwave-Assisted Extraction of Ricinine from Ricinus communis Leaves. Antioxidants (Basel) 8.
Nicholson, W.L., 2002. Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences 59, 410-416.
Nunez, O.F.L., Pizon, A.F., Tamama, K., 2017. Ricin Poisoning after Oral Ingestion of Castor Beans: A Case Report and Review of the Literature and Laboratory Testing. Journal of Emergency Medicine 53, e67-e71.
Ohishi, K., Toume, K., Arai, M.A., Sadhu, S.K., Ahmed, F., Mizoguchi, T., Itoh, M., Ishibashi, M., 2014. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1alpha. Bioorganic & Medicinal Chemistry 22, 4597-4601.
Palatnick, W., Tenenbein, M., 2000. Hepatotoxicity from Castor Bean Ingestion in a Child. Clinical Toxicology 38, 67-69.
Patel, K., Patel, D.K., 2016. Medicinal significance, pharmacological activities, and analytical aspects of ricinine: A concise report. Journal of Coastal Life Medicine 4, 663-667.
Paul, E.A., Juma, N.G., 1981. Mineralization and immobilization of soil nitrogen by microorganisms. Ecological Bulletins, 179-195.
Pedroso, L.A., Campos, V.P., Pedroso, M.P., Barros, A.F., Freire, E.S., Resende, F.M., 2019. Volatile organic compounds produced by castor bean cake incorporated into the soil exhibit toxic activity against Meloidogyne incognita. Pest Management Science 75, 476-483.
Peng, J., Cai, S., Wang, L., Zhao, N., Zhang, T.J., Chen, Z.X., Meng, F.H., 2014. A metabonomic analysis of serum from rats treated with ricinine using ultra performance liquid chromatography coupled with mass spectrometry. PLOS ONE 9, e90416.
Pisa, G., Magnani, G.S., Weber, H., Souza, E.M., Faoro, H., Monteiro, R.A., Daros, E., Baura, V., Bespalhok, J.P., Pedrosa, F.O., Cruz, L.M., 2011. Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil. Brazilian Journal of Medical and Biological Research 44, 1215-1221.
Pittman, C.T., Guido, J.M., Hamelin, E.I., Blake, T.A., Johnson, R.C., 2013. Analysis of a ricin biomarker, ricinine, in 989 individual human urine samples. Journal of Analytical Toxicology 37, 237-240.
Postma, J., Scheper, R., Schilder, M., 2010. Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil. Soil Biology and Biochemistry 42, 804-812.
Qin, S., Gan, J., Liu, W., Becker, J.O., 2004. Degradation and adsorption of fosthiazate in soil. Journal of agricultural and food chemistry 52, 6239-6242.
Ramos-López, M.A., Pérez, S., Rodríguez-Hernández, G.C., Guevara-Fefer, P., Zavala-Sanchez, M.A., 2010. Activity of Ricinus communis (Euphorbiaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). African Journal of Biotechnology 9, 1359-1365.
Rampadarath, S., Puchooa, D., Ranghoo-Sanmukhiya, V.M., 2014. A comparison of polyphenolic content, antioxidant activity and insecticidal properties of Jatropha species and wild Ricinus communis L. found in Mauritius. Asian Pacific Journal of Tropical Medicine 7, S384-S390.
Ribeiro, P.R., de Castro, R.D., Fernandez, L.G., 2016. Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: A review. Industrial Crops and Products 91, 358-376.
Risco, G.V.S., Idrogo, C.R., Kato, M.J., Díaz, J.S., Armando-Jr, J., Paredes, G.E.D., 2012. Larvicidal activity of Piper tuberculatum on Spodoptera frugiperda (Lepidoptera: Noctuidae) under laboratory conditions. Revista Colombiana De Entomologia, 38(1), 35–41.
Ritzinger, C.H.S.P., De Ley, P., Ploeg, A.T., McSorley, R., Tandingan De Ley, I., 2014. Impact of castor meal on root-knot and free-living nematodes. Scientia Agricola 71, 274-280.
Rizvi, R., Mahmood, I., Tiyagi, S.A., Khan, Z., 2012. Conjoint effect of oil-seed cakes and Pseudomonas fluorescens on the growth of chickpea in relation to the management of plant-parasitic nematodes. Brazilian Archives of Biology and Technology v.55 n.6, 801-808.
Roen, B.T., Opstad, A.M., Haavind, A., Tonsager, J., 2013. Serial ricinine levels in serum and urine after ricin intoxication. Journal of Analytical Toxicology 37, 313-317.
Roldi, M., Dias-Arieira, C.R., Severino, J.J., de Melo Santana, S., Santo Dadazio, T., Marini, P.M., Mattei, D., 2013. Use of organic amendments to control meloidogyne incognita on tomatoes. Nematropica, 49-55.
Rostagno, M.A., Palma, M., Barroso, C.G., 2007. Microwave assisted extraction of soy isoflavones. Analytica Chimica Acta 588, 274-282.
Saber, D.L., Crawford, R.L., 1985. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Applied and Environmental Microbiology 50, 1512-1518.
Sahrawat, K., Jones, M., Diatta, S., Adam, A., 2001. Response of upland rice to fertilizer phosphorus and its residual value in an Ultisol. Communications in Soil Science and Plant Analysis 32, 2457-2468.
Savvas, D., Leneti, H., Mantzos, N., Kakarantza, L., Barouchas, P., 2010. Effects of enhanced NH4+-N supply and concomitant changes in the concentrations of other nutrients needed for ion balance on the growth, yield, and nutrient status of eggplants grown on rockwool. The Journal of Horticultural Science and Biotechnology 85, 355-361.
Severino, L.S., Costa, F.X., de Macêdo Beltrão, N.E., de Lucena, A.M.A., Guimarães, M.M., 2005. Mineralização da torta de mamona, esterco bovino e bagaço de cana estimada pela respiração microbiana. Revista de biologia e ciências da terra 5, 0.
Sharma, S., Vasudevan, P., Madan, M., 1990. Insecticidal Value of Castor (Ricinus communis) Against Termites International Biodeterioration 27, 249-254.
Shmi, R., Pathak, D.V., Kumar, R., 2019. Effect of Ricinus communis L on Microorganisms: Advantages and Disadvantages. International Journal of Current Microbiology and Applied Sciences 8, 878-884.
Silva, P.N.L., Lanna, N.B.L., Cardoso, A., II, 2016. Produção de beterraba em função de doses de torta de mamona em cobertura. Horticultura Brasileira 34, 416-421.
Siqueira, C.L., Freire, M.G.M., Moreira, A.S.N., Macedo, M.L.R., 2012. Control of papaya fruits anthracnose by essential oil of Ricinus communis. Brazilian Archives of Biology and Technology 55(1), 75–80.
Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., 2020. Methods of soil analysis, part 3: Chemical methods. John Wiley & Sons.
Sultana, N., Ghaffar, A., 2010. Effect of fungicides, microbial antagonists and oilcakes in the control of Fusarium solani, the cause of seed rot, seedling and root infection of bottle gourd, bitter gourd and cucumber. Pakistan Journal of Botany 42(4), 2921-2934.
Sun, J., Ma, X.-l., Wang, W., Zhang, J., Zhang, H., Wang, Y.-j., Feng, J., 2019. The adsorption behavior of atrazine in common soils in Northeast China. Bulletin of Environmental Contamination and Toxicology 103, 316-322.
Taur, D.J., Waghmare, M.G., Bandal, R.S., Patil, R.Y., 2011. Antinociceptive activity of Ricinus communis L. leaves. Asian Pacific Journal of Tropical Biomedicine 1, 139-141.
Tinzaara, W., Tushomereirwe, W., Nankinga, C.K., Gold, C.S., Kashija, J., 2006. The potential of using botanical insecti- cides for the control of the banana weevil, Cosmopolites sordidus (Coleoptera Curculionidae). African Journal of Biotechnology 5(20), 1994–1998.
Tiyagi, S.A., Alam, M.M., 1995. Efficacy of oilseed cakes against phytonematodes and soil inhibiting fungi on mung bean and chickpea. Bioresource Technology 233-239.
Van Rhijn, P., Vanderleyden, J., 1995. The Rhizobium-plant symbiosis. Microbiological Reviews 59, 124-142.
Waller, G.R., Lee, J.L., 1969. Metabolism of the α-Pyridone Ring of Ricinine in Ricinus communis L. Plant Physiology 44, 522-526.
Waller, G.R., Skursky, L., 1972. Translocation and Metabolism of Ricinine in the Castor Bean Plant, Ricinus communis L. Plant physiology 50, 622-626.
Wamaket, N., Dieng, H., Komalamisra, N., Apiwathnasorn, C., Morales, R.E., Thanomsub, B.W., Srisawat, R., Attrapadung, S., 2018. Larvicidal and adulticidal activities of castor oil against the dengue vector, Aedes aegypti. Tropical Biomedicine 35(3), 610-618.
Wang, W., Niu, J., Zhou, X., Wang, Y., 2011. Long-term change in land management from subtropical wetland to paddy field shifts soil microbial community structure as determined by PLFA and T-RFLP. Polish Journal of Ecology 59, 37-44.
Wang, Z., Li, D., Zhou, Z., Li, B., Yang, W., 2009. A simple method for screening and quantification of ricinine in feed with HPLC and LC-MS. Journal of Chromatography Sciences 47, 585-588.
Wołejko, E., Jabłońska-Trypuć, A., Wydro, U., Butarewicz, A., Łozowicka, B., 2020. Soil biological activity as an indicator of soil pollution with pesticides – A review. Applied Soil Ecology 147.
Worbs, S., Kohler, K., Pauly, D., Avondet, M.A., Schaer, M., Dorner, M.B., Dorner, B.G., 2011. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins (Basel) 3, 1332-1372.
Xiao, C.Z., Wu, Y., Gan, D.S., 1999. Adulteration detection for edible vegetable oil. Chinese Journal of Oil Crop Sciences 21, 63-67.
Xu, J., Wu, L., Chang, A.C., 2009. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere 77, 1299-1305.
Yeboah, A., Ying, S., Lu, J., Xie, Y., Amoanimaa-Dede, H., Boateng, K.G.A., Chen, M., Yin, X., 2020. Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. Food Science and Technology.
Zak, J.C., Willig, M.R., Moorhead, D.L., Wildman, H.G., 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry 26, 1101-1108.
Zarai, Z., Chobba, I.B., Mansour, R.B., Békir, A., Gharsallah, N., Kadri, A., 2012. Essential oil of the leaves of Ricinus communis L.: In vitro cytotoxicity and antimicrobial properties. Lipids in Health and Disease 11, 102.
Zartman, R., Green, C., San Francisco, M., Zak, J., James, W., Boroda, E., 2003. Mitigation of ricin contamination in soils: Sorption and degradation. Texas Tech University, Lubbock.
Zhang, H.F., Zhang, X., Yang, X.-H., Qiu, N.-X., Wang, Y., Wang, Z.-Z., 2013. Microwave assisted extraction of flavonoids from cultivated Epimedium sagittatum: Extraction yield and mechanism, antioxidant activity and chemical composition. Industrial Crops and Products 50, 857-865.
Zhang, Q.C., Shamsi, I.H., Xu, D.-T., Wang, G.H., Lin, X.-Y., Jilani, G., Hussain, N., Chaudhry, A.N., 2012. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Applied Soil Ecology 57, 1-8.
Zhu, Q.L., Gu, H., Ke, Z., 2018. Congeneration biodiesel, ricinine and nontoxic meal from castor seed. Renewable Energy 120, 51-59.
電子全文 電子全文 ( 網際網路公開日期:20270327 )
連結至畢業學校之論文網頁 點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!