The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.
Nan Fang Yi Ke Da Xue Xue Bao. 2019 Aug 20; 39(8): 957–963.
PMCID: PMC6765600

Language: Chinese | English

川芎嗪促进X射线诱导的骨髓衰竭C57小鼠的骨髓修复

Tetramethylpyrazine promotes bone marrow repair in a C57 mouse model of X-rayinduced immune-mediated bone marrow failure

张 小敏

南方医科大学 中医药学院,广东 广州 510515, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

Find articles by 张 小敏

高 磊

南方医科大学 中医药学院,广东 广州 510515, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China 南方医科大学 南方医院中医科,广东 广州 510515, Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Find articles by 高 磊

胡 潇

南方医科大学 中医药学院,广东 广州 510515, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

Find articles by 胡 潇

陈 姗姗

南方医科大学 中医药学院,广东 广州 510515, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

Find articles by 陈 姗姗

聂 玲辉

广东省传统医学与运动伤害康复研究所,广东 广州 510317, Guangdong Institute of Traditional Medicine and Sports Injury Rehabilitation, Guangzhou 510317, China

Find articles by 聂 玲辉

朱 玲玲

南方医科大学 中医药学院,广东 广州 510515, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China 南方医科大学 中医药学院,广东 广州 510515, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China 南方医科大学 南方医院中医科,广东 广州 510515, Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China 广东省传统医学与运动伤害康复研究所,广东 广州 510317, Guangdong Institute of Traditional Medicine and Sports Injury Rehabilitation, Guangzhou 510317, China ** P < 0.01, *** P < 0.001 vs model.

2.3.2. 川芎嗪治疗后骨髓病理学改变

骨髓病理可见,川芎嗪治疗后小鼠骨髓充血减轻、有核细胞增加。随着川芎嗪给药浓度的增加,骨髓充血减轻和有核细胞增多趋势越明显( 图 6 )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-39-8-957-6.jpg

川芎嗪治疗后骨髓病理变化

Bone marrow pathology in the mice after tetramethylpyrazine (TMP) treatment at different doses (HE staining, ×400). A : Model group; B : TMP low dose group; C : TMP medium dose group; D : TMP high dose group.

2.3.3. 川芎嗪治疗后骨髓Fas表达变化

骨髓免疫荧光可见,与模型组相比,川芎嗪中、高剂量治疗组小鼠骨髓中Fas蛋白表达呈现减少趋势( 图 7 )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-39-8-957-7.jpg

川芎嗪治疗后骨髓Fas表达变化

Expression of Fas in the bone marrow of the mice after TMP treatment (IF staining, ×200).

3. 讨论

合适的动物模型对于SAA的发病机制及治疗方案的研究非常重要,免疫介导的BMF模型是最接近SAA患者发病机制的动物模型 [ 5 - 6 ] 。目前国内外大多采用辐照结合淋巴细胞输注的方法建立免疫介导的BMF动物模型。国外报道多采用γ射线辐照,具体细节没有统一的标准,在国内γ射线主要用于特殊类型肿瘤放疗,因辐照过程需要特殊设备和防护,较少应用于医学实验研究;在国内X射线更为常见和更易满足辐照条件,但是关于采用X射线辐照建立BMF模型尚未见文献报道,故我们通过对X射线剂量的探索,以期建立适合实验研究的免疫介导BMF模型。在14 d后不同剂量X射线照射的模型小鼠外周血三系和骨髓有核细胞均明显减少;骨髓病理可见脂肪空泡、骨髓细胞性明显降低、巨核细胞缺如;肾、肝、肠没有明显的淋巴细胞浸润;说明C57小鼠经亚致死剂量X射线照射后,输入MHC不相容的淋巴细胞可成功建立BMF模型,无移植物抗宿主病发生 [ 8 , 16 ] 。由于小肠对射线高度敏感,在造模过程中出现肠粘膜损伤,可能与辐射后肠粘膜炎症和应激反应诱导的上皮干细胞和内皮细胞凋亡有关 [ 17 - 19 ]

在14 d后不同辐照剂量组的模型小鼠外周血三系和骨髓有核细胞明显下降,随X射线剂量的增加,外周血三系和骨髓有核细胞下降越明显,说明BMF程度与X射线剂量呈剂量依赖效应。6.5 Gy X射线组模型小鼠骨髓病理显示未见有核细胞,该亚致死剂量已达到清髓效果,死亡率达50%,不利于模型小鼠后续实验研究;然而低剂量组5.0 Gy X射线辐照模型小鼠,与6.5 Gy、5.75 Gy剂量组相比,BMF程度较轻,存活率提高,有利于免疫介导BMF模型的发病机制及治疗方案研究。

川芎嗪是从中药川芎中提取出来的活性生物碱,临床上广泛应用于心脑血管、呼吸系统及肾脏等疾病治疗,研究证实其具有扩张血管、改善微循环、抑制血小板聚集、抗氧化应激反应等作用 [ 20 ] ,也有研究报道川芎嗪能促进损伤后骨髓微循环修复和造血功能重建 [ 13 - 14 , 21 - 22 ] 。在我们实验中观察到小鼠经5.0 Gy X射线辐照及淋巴细胞输注造模后,给与川芎嗪治疗14 d,骨髓病理显示骨髓充血明显减轻、有核细胞增加,外周三系出现上升,随川芎嗪剂量的增加,骨髓改善越明显,表明川芎嗪对BMF小鼠骨髓造血微环境和造血功能修复有一定促进作用,也在一定程度上体现中药川芎的“活血祛瘀”的功效,并进一步拓展了“祛瘀生新”的理论 [ 33 -34] 。Fas作为一种死亡受体,其与配体FasL结合后可诱导表达Fas的细胞凋亡,并且Fas介导的细胞凋亡是导致骨髓细胞破坏的主要途径 [ 25 ] ,我们实验发现川芎嗪可降低骨髓衰竭小鼠Fas表达,表明川芎嗪可能通过调节细胞凋亡信号来参与骨髓修复 [ 26 ] ,也可能与川芎嗪上调骨髓基质细胞bFGF、bFGFR表达 [ 21 , 27 ] ,及促进造模后骨髓氧自由基的清除、DNA损伤修复有关 [ 15 , 28 - 29 ]

综上所述,采用亚致死剂量X射线照射联合同种异体淋巴细胞输注,可成功建立免疫介导的BMF模型,在该模型中亚致死剂量X射线辐照可导致受体小鼠骨髓损伤和免疫功能下降,同种异体淋巴细胞输注诱导的免疫反应进一步加重骨髓造血细胞破坏 [ 30 - 32 ] 。5.0 Gy X射线辐照组骨髓损伤程度相对较轻,存活率较高,有利于免疫介导的BMF模型实验研究。在该模型中BMF程度除了与辐照剂量及剂量率有关,也与受体小鼠的种类、年龄、性别、营养等一般情况有关 [ 32 - 33 ] 。川芎嗪治疗后模型小鼠骨髓造血功能改善,提示川芎嗪可用于SAA等骨髓衰竭疾病的治疗研究,也进一步拓展了“祛瘀生新”理论。

Biography

张小敏,硕士,E-mail: moc.qq@6848243301

Funding Statement

国家自然科学基金(81573706)

Supported by National Natural Science Foundation of China (81573706)

References

1. Young NS, Calado RT, Scheinberg P. Current concepts in the pathohysiology and treatment of aplastic anemia. Blood. 2006; 108 (8):2509–19. doi: 10.1182/blood-2006-03-010777. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Feng XM, Lin ZH, Sun WL, et al. Rapamycin is highly effective in murine models of immune-mediated bone marrow failure. Haematologica. 2017; 102 (10):1691–703. doi: 10.3324/haematol.2017.163675. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Roderick JE, Gonzalez-Perez G, Kuksin CA, et al. Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia. J Exp Med. 2013; 210 (7):1311–29. doi: 10.1084/jem.20112615. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. 姚 军, 李 树浓. 淋巴细胞与再生障碍性贫血的实验研究 中华血液学杂志 1991; 12 (5):229–31. [ Google Scholar ]
5. Li J, Chen H, Lv YB, et al. Intraperitoneal injection of multiplacentas pooled cells treatment on a mouse model with aplastic anemia. Stem Cells Int. 2016; 22 (5):3279793. [ PMC free article ] [ PubMed ] [ Google Scholar ]
6. Tang Y, Desierto MJ, Chen JC, et al. The role of the Th1 transcription factor T-bet in a mouse model of immune-mediated bone-marrow failure. Blood. 2010; 115 (3):541–8. doi: 10.1182/blood-2009-03-211383. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Gonzaga VF, Wenceslau CV, Lisboa GS, et al. Mesenchymal stem cell benefits observed in bone marrow failure and acquired aplastic anemia. Stem Cells Int. 2017; 11 (3):1–12. [ PMC free article ] [ PubMed ] [ Google Scholar ]
8. Sato K, Feng X, Chen J, et al. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function. Haematol. 2016; 101 (1):57–67. doi: 10.3324/haematol.2014.121632. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Erie AJ, Samsel L, Takaku T, et al. MHC class Ⅱ upregulation and colocalization with Fas in experimental models of immunemediated bone marrow failure. Exp Hematol. 2011; 39 (8):837–49. doi: 10.1016/j.exphem.2011.05.005. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Chen JC, Desierto MJ, Feng XM, et al. Immune-mediated bone marrow failure in C57BL/6 mice. Exp Hematol. 2015; 43 (4):256–67. doi: 10.1016/j.exphem.2014.12.006. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. 肖 胜利, 单 能飞, 郑 好望. γ射线在核医学上的治疗作用 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdwlzc200806010 现代物理知识 2008; 20 (6):40–1. [ Google Scholar ]
12. 贺 选, 刘 晓超, 杜 建飞, et al. 体部伽马射线立体定向放疗治疗肺部原发及转移瘤的疗效及毒副反应 现代肿瘤医学 2018; 26 (14):2206–8. doi: 10.3969/j.issn.1672-4992.2018.14.016. [ CrossRef ] [ Google Scholar ]
13. 胡 德蓉, 齐 洁琳, 周 登锋, et al. 川芎嗪对急性放射损伤小鼠骨髓中LFA- 1, ICAM-1表达影响的研究 中国病理生理杂志 2008; 24 (1):128–31. doi: 10.3321/j.issn:1000-4718.2008.01.031. [ CrossRef ] [ Google Scholar ]
14. 周 银莉, 刘 文励, 孙 汉英, et al. 川芎嗪对骨髓移植小鼠早期造血重建作用的研究 中华血液学杂志 2002; 23 (4):207–8. doi: 10.3760/j:issn:0253-2727.2002.04.011. [ CrossRef ] [ Google Scholar ]
15. Zheng H, Wang S, Zhou P, et al. Effects of tetramethylpyrazine on DNA damage and apoptosis induced by irradiation. Environ Toxicol Pharmacol. 2013; 36 (3):1197–206. doi: 10.1016/j.etap.2013.09.023. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Bloom ML, Wolk AG, Simon-Stoos KL, et al. A mouse model of lymphocyte infusion-induced bone marrow failure. Exp Hematol. 2004; 32 (12):1163–72. doi: 10.1016/j.exphem.2004.08.006. [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. 夏 小春, 陈 秋, 武 书, et al. X射线照射对小鼠小肠黏膜杯状细胞的影响 http://d.old.wanfangdata.com.cn/Periodical/szyxyxb201204009 苏州大学学报:医学版 2012; 32 (4):485–8, 493. [ Google Scholar ]
18. Francois A, Milliat F, Guipaud OA. Inflammation and immunity in radiation damage to the gut mucosa. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3614034 Biomed Res Int. 2013; 19 (3):123241. [ PMC free article ] [ PubMed ] [ Google Scholar ]
19. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001; 293 (5528):293–7. doi: 10.1126/science.1060191. [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. 姜 宇懋, 王 丹巧. 川芎嗪药理作用研究进展 http://d.old.wanfangdata.com.cn/Periodical/zgshywzz201003023 中国现代中药 2016; 18 (10):1364–70. [ Google Scholar ]
21. 吴 宁, 周 登锋, 齐 洁琳, et al. 川芎嗪对BMT后小鼠骨髓基质细胞bFGF表达水平的影响 中国实验血液学杂志 2006; 14 (5):1004–7. doi: 10.3969/j.issn.1009-2137.2006.05.033. [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Li L, Chu LS, Fang Y, et al. Preconditioning of bone marrowderived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats. Stem Cell Res Ther. 2017; 8 (3):112. [ PMC free article ] [ PubMed ] [ Google Scholar ]
23. 金 玉青, 洪 远林, 李 建蕊, et al. 川芎的化学成分及药理作用研究进展 http://d.old.wanfangdata.com.cn/Periodical/zyylc201303017 中药与临床 2013; 4 (3):44–8. [ Google Scholar ]
24. 张 金生. 活血化瘀与干细胞循环 中医杂志 2012; 53 (6):451–4. doi: 10.3969/j.issn.0411-8421.2012.06.057. [ CrossRef ] [ Google Scholar ]
25. Omokaro SO, Desierto MJ, Eckhaus MA, et al. Lymphocytes with Aberrant Expression of Fas or Fas Ligand Attenuate Immune Bone Marrow Failure in a Mouse Model. J Immunol. 2009; 182 (6):3414–22. doi: 10.4049/jimmunol.0801430. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. 常 保萍, 邓 昊, 张 海深, et al. Fas, Bcl2在放射损伤小鼠骨髓细胞的表达及意义和川芎嗪对其影响的研究 中国免疫学杂志 2007; 23 (5):465–7. doi: 10.3321/j.issn:1000-484X.2007.05.020. [ CrossRef ] [ Google Scholar ]
27. Wu N, Sun H, Liu W, et al. The effects of Tetramethylpyrazine on the expression of bFGF and bFGFR in bone marrow in radiation injured mice. J Huazhong Univ Sci Technolog Med Sci. 2003; 23 (4):348–51. doi: 10.1007/BF02829414. [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. Zhang L, Deng MY, Zhou SW, et al. Tetramethylpyrazine inhibits hypoxia-induced pulmonary vascular leakage in rats via the ROS-HIF-VEGF pathway. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ea464dc27cec744a10f6b343f6496dd Pharmacol. 2011; 87 (5/6):265–73. [ PubMed ] [ Google Scholar ]
29. Yu T, Qu J, Wang Y, et al. Tetramethylpyrazine protects chondrocyte against IL-1β induced injury by regulation of SOX9/NF-κB signaling pathway. J Cell Biochem. 2018; 119 (9):7419–30. doi: 10.1002/jcb.27051. [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. Chen J, Lipovsky K, Ellison FM, et al. Bystander destruction of hematopoietic progenitor and stem cells in a mouse model of infusion-induced bone marrow failure. Blood. 2004; 104 (6):1671–8. doi: 10.1182/blood-2004-03-1115. [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. Xu GS, Wu HY, Zhang JL, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13573e7a387cd1c49577eb651372897b . Free Radic Biol Med. 2015; 87 (2):15–25. [ PMC free article ] [ PubMed ] [ Google Scholar ]
32. 孙 谕, 顾 军, 张 宏, et al. 新型免疫介导骨髓造血功能衰竭小鼠模型的建立及特性分析 中国免疫学杂志 2010; 26 (11):1024–8. doi: 10.3969/j.issn.1000-484X.2010.11.014. [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. Williams JP, Brown SL, Georges GE, et al. Animal models for medical countermeasures to radiation exposure. Radiat Res. 2010; 173 (4, SI):557–78. doi: 10.1667/RR1880.1. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University