若 \(a,b\) 為實數,\(\left| a \right| + \left| b \right| \ge \left| {a + b} \right|\),“\(=\)”成立時,\(ab\ge 0\)。(此不等式可以利用三角形的兩邊之和大於第三邊來理解,因此,稱之為三角不等式。)
因為 \(\left| a \right| + \left| b \right| \ge 0,~\left| {a + b} \right| \ge 0\),直接相減或相除無法順利運算,因此,考慮平方相減
\(\begin{array}{ll}{\left( {\left| a \right| + \left| b \right|} \right)^2} – {\left| {a + b} \right|^2} &= \left( {{{\left| a \right|}^2} + 2\left| a \right|\left| b \right| + {{\left| b \right|}^2}} \right) – {\left( {a + b} \right)^2}\\&= \left( {{a^2} + 2\left| {ab} \right| + {b^2}} \right) – ({a^2} + 2ab + {b^2})\\&= 2\left( {\left| {ab} \right| – ab} \right) \ge 0\end{array}\)
因此,\({\left( {\left| a \right| + \left| b \right|} \right)^2} \ge {\left| {a + b} \right|^2}\),即 \(\left| a \right| + \left| b \right| \ge \left| {a + b} \right|\)
“\(=\)”成立時, 即 \(\left| {ab} \right| – ab = 0\)移項得 \(\left| {ab} \right| = ab\),\(\therefore ab\ge 0\)。
整理得 \(\left| {a – b} \right| \le \left| a \right| + \left| b \right|\),“\(=\)”成立時,\(ab\le 0\),此為三角不等式的等價命題。
我們也可以進一步改寫成若 \(a,b\)為實數,則 \(\left| a \right| + \left| b \right| \ge \left| {a – b} \right|\ge\left| a \right| – \left| b \right|\)。
由 1.2. 知:\(\left| a \right| + \left| b \right| \ge \left| {a – b} \right|\ge\left| a \right| – \left| b \right|\)。
例如:若 \(x\) 為實數,則當 \(x=\underline{~~~~~~}\)時,求 \(\left| x-1 \right| +\left | x-2 \right|\) 有最小值。
\(\because\left| {x – 1} \right| + \left| {x – 2} \right| = \left| {1 – x} \right| + \left| {x – 2} \right| \ge \left| {(1 – x) + (x – 2)} \right| = \left| { – 1} \right| = 1\),等號成立時,\((1-x)(x-2)\ge 0\),即 \((x-1)(x-2)\le 0\) ,得 \(1\le x \le 2\)。
將絕對值函數轉換成折線問題,從圖形中可以看出,在 \(1\le x \le 2\) 時,\(\left| x-1\right|+\left| x-2\right|\) 有最小值 \(1\)。
例如:若 \(x\) 為實數,則當 \(x=\underline{~~~~~~}\) 時,求 \(\left| x+1\right|+\left| x-3\right|+\left| x-7\right|\) 有最小值。
解法一:利用三角不等式,
\(\begin{array}{ll}\because\left| {x + 1} \right| + \left| {x – 3} \right| + \left| {x – 7} \right| &= \left| {x + 1} \right| + \left| {7 – x} \right| + \left| {x – 3} \right| \\&\ge \left| {\left( {x + 1} \right) + (7 – x)} \right| + \left| {x – 3} \right| = 8 + \left| {x – 3} \right|\end{array}\)
,等號成立時,\((x+1)(7-x)\ge 0\),即 \((x+1)(x-7)\le 0\),得 \(-1\le x\le 7\),
所以,在 \(x=3\) 時,\(\left| {x + 1} \right| + \left| {x – 3} \right| + \left| {x – 7} \right|\) 有最小值 \(8\)。
解法二:直接考慮中位數的概念,令 \(x+1=0,~x-3=0,~x-7=0\),得 \(x=-1,~3,~7\),此三數的中位數為 \(3\),因此,在 \(x=3\) 時,\(\left| {x + 1} \right| + \left| {x – 3} \right| + \left| {x – 7} \right|\) 有最小值 \(8\)。
解法三:考慮去絕對值,令
\(\begin{array}{ll}y &= \left| {x + 1} \right| + \left| {x – 3} \right| + \left| {x – 7} \right| \\&= \left\{ \begin{array}{l} x \ge 7,y = (x + 1) + (x – 3) + (x – 7) = 3x – 9\\ 3 \le x < 7,y = (x + 1) + (x – 3) + (7 – x) = x + 5\\ – 1 \le x < 3,y = (x + 1) + (3 – x) + (7 – x) = 11 – x\\ x < – 1,y = ( – x – 1) + (3 – x) + (7 – x) = – 3x + 9 \end{array} \right.\end{array}\)
從圖形中可以看出,在 \(x=3\) 時,\(\left| {x + 1} \right| + \left| {x – 3} \right| + \left| {x – 7} \right|\) 有最小值 \(8\)
數學思考:已知十個實數 \(x_1,~x_2,…,x_{10}\),若滿足 \(\left| {{x_1}} \right| + \left| {{x_2}} \right| + … + \left| {{x_{10}}} \right| = 10\),
求 \(\left| {{x_1} – {x_2}} \right| + \left| {{x_2} – {x_3}} \right| + … + \left| {{x_{10}} – {x_1}} \right|\) 的最大值
。
參考解法:
\(\begin{array}{ll}\left| {{x_1} – {x_2}} \right| + \left| {{x_2} – {x_3}} \right| + … + \left| {{x_{10}} – {x_1}} \right| &\le \left( {\left| {{x_1}} \right| + \left| {{x_2}} \right|} \right) + \left( {\left| {{x_2}} \right| + \left| {{x_3}} \right|} \right) + …(\left| {{x_{10}}} \right| + \left| {{x_1}} \right|) \\&= 2\left( {\left| {{x_1}} \right| + \left| {{x_2}} \right| + … + \left| {{x_{10}}} \right|} \right) \\&= 2 \times 10 = 20\end{array}\)
,最大值成立時,可取
\(\left( {{x_1},{x_2},{x_3},{x_4},{x_5},{x_6},{x_7},{x_8},{x_9},{x_{10}}} \right) = (1, – 1,1, – 1,1, – 1,1, – 1,1, – 1)\)