:
twitter line
研究生: 洪鈺婷
研究生(外文): Yu-Ting Hong
論文名稱: 扇出型晶圓級構裝之濕-熱-固耦合應力與翹曲分析
論文名稱(外文): Thermo-Hygro-Mechanical Stress and Warpage Analyses of Fan-Out Wafer Level Package
指導教授: 任明華 任明華引用關係
指導教授(外文): Ming-Hwa R. Jen
學位類別: 碩士
校院名稱: 國立中山大學
系所名稱: 機械與機電工程學系研究所
學門: 工程學門
學類: 機械工程學類
論文種類: 學術論文
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 105
中文關鍵詞: 楊氏模數 扇出型封裝 濕度 濕度膨脹係數 有限元素分析 三維數位影像相關 翹曲
外文關鍵詞: Fan-out package moisture FEA 3D-DIC Young’s modulus CME warpage
相關次數:
  • 被引用 被引用: 1
  • 點閱 點閱:730
  • 評分 評分:
  • 下載 下載:114
  • 收藏至我的研究室書目清單 書目收藏:1
IC封裝中的高分子聚合物材料具有濕度敏感特性,意即容易吸收濕氣,此種材料特性可能導致封裝發生翹曲情形。當易吸濕材料吸收外界環境中的水分並受到溫度變化影響時,容易使封裝內部產生熱應力和濕應力。在回焊高溫時,濕氣還有可能導致蒸汽壓力的產生。熱應力和濕度應力是由材料間的熱膨脹係數不匹配和濕度膨脹係數不匹配所導致。且因為如此,IC封裝中的各層材料具有不同的應變值,使封裝變形、產生翹曲。
本文採用有限元素分析(FEA)軟體ANSYS v18.2來建立模擬模型,以此觀察扇出型晶圓級封裝(Fan-Out Wafer-Level Package)中濕-熱-固耦合應力與翹曲情形。本論文共分為四部分來討論:濕度擴散實驗、材料機械性能測試、結合三維數位影像相關(Digital Image Correlation)技術對封裝體進行的翹曲實驗和封裝體的濕-熱-固耦合模型。
首先,對模壓化合物(CPD)和聚醯亞胺(PI)薄膜進行浸濕實驗。再者,對100%浸濕的樣品進行熱分析測試以獲得材料參數。第三,分別對封裝體進行三維數位影像相關實驗,觀察其在回焊溫度時的翹曲情形。最後,建立濕-熱-固耦合模型,將翹曲實驗結果和有限元分析模擬結果做比較,分別分析UX和UY方向的形變以及UZ方向的翹曲,模擬結果落在實驗範圍內,得以驗證模型正確性。建立熱-固耦合模型,比對浸濕和未浸濕封裝的翹曲值,發現浸濕後封裝翹曲值比未浸濕的封裝更大,由此可見,濕氣是影響封裝翹曲的重要因素。
Since the polymer materials in electronic package are humidity sensitive, then their material properties may cause warpage of the package. When the polymer materials absorb moisture in the external environment and are affected by the temperature changes, the thermal stress and moisture stress are generated in polymers. Both the thermal expansion coefficient mismatch and moisture expansion coefficient mismatch can also result in the thermal stress and moisture stress. Based on the above statements, the package warpage occurs.
This work adopted the finite element analysis (FEA) software, ANSYS v18.2, to simulate the moisture diffusion and structure effects of thermo-hygro-mechanical coupling in fan-out wafer-level package. There were four parts of work, such as moisture diffusion, mechanical performance tests, warpage experiments with 3D digital image correlation (3D-DIC) and thermo-hygro-mechanical coupling models.
First, we conducted moisture soaking experiments in compounds (CPD) and polyimide (PI) film. Second, performed thermal analysis tests on soaked samples to obtain material parameters. Third, made 3D-DIC experiments on fan-out package and investigate the warpage conditions during heating and cooling. At last, built thermo- hygro-mechanical coupling models of fan-out package. Comparing the warpage experimental results with FEA simulation results at reflow temperature, the simulation results fell within the range of experimental data. Soaked packages have greater warpage than unsoaked packages, this shows that moisture made the package warpage larger. In summary, moisture is an important factor that affects package warpage.
摘 要 i
Abstract ii
圖 次 vi
表 次 ix
第一章 緒論 1
1.1 前言 1
1.2 IC構裝簡介 3
1.3 研究動機及目的 4
1.4 組織章節 5
第二章 文獻回顧 6
2.1 濕度影響材料性質 6
2.2 濕度分析與濕熱應力 6
2.3 濕度模擬分析 7
2.4 封裝翹曲分析 10
2.5 文獻回顧結論 11
第三章 模擬理論基礎與實驗 12
3.1 濕熱擴散理論 12
3.2 濕度實驗 15
3.2.1 樣品製備 15
3.2.2 浸濕實驗 16
3.2.3 熱分析實驗 16
3.3 熱分析實驗 17
3.3.1 熱機械分析 18
3.3.2 熱重分析 18
3.3.3 動態機械分析 18
3.3.4 數位影像計量分析 19
3.4 有限元素模型 19
第四章 濕度實驗 31
4.1 浸濕實驗 31
4.2 濕度相關係數 32
4.2.1 濕度擴散係數(D)及活化能(Q) 32
4.2.2 濕度膨脹係數(CME) 34
4.2.3 熱膨脹係數(CTE) 36
4.2.4 楊氏模數(E) 36
4.2.5 飽和蒸汽壓(pg) 37
4.3 翹曲分析實驗 37
第五章 有限元素模擬分析 61
5.1 前處理 61
5.1.1 幾何與網格劃分 61
5.1.2 邊界條件 61
5.1.3 指令匯入參數 62
5.2 濕-熱-固耦合模型 62
5.2.1 濕度擴散模型 62
5.2.2 濕-熱-固耦合模型 62
5.2.3 濕-蒸汽壓應力模型 63
5.2.4 熱應力模型 64
5.2.5 熱-固耦合模型 64
5.3 濕氣對封裝之影響 64
第六章 分析與討論 77
6.1 實驗結果分析 77
6.2 模擬結果分析 78
6.3 實驗與模擬比較 79
6.4 考慮數位影像範圍 80
第七章 結論與未來展望 86
7.1 結論 86
7.2 未來展望 87
參考文獻 88
[1]許明哲,先進微電子3D-IC構裝,五南圖書出版股份有限公司,2017。
[2]“Nylon 6 - Influence of Water on Mechanical Properties and Tg.” PerkinElmer, Inc., 2007.
[3]TA-133A, “Thermal Analysis Application Brief - Measurement of Moisture Effects on the Mechanical Properties of 66 Nylon” TA Instruments, Inc., n.d.
[4]L. M. Bonnaillie and P. M. Tomasula. “Application of Humidity-Controlled Dynamic Mechanical Analysis (DMA-RH) to Moisture-Sensitive Edible Casein Films for Use in Food Packaging.” Polymers, vol.7, no. 1, pp. 91-114, 2015.
[5]A. Maiorana, B. Subramaniam, R. Centore, X. Han, R. J. Linhardt, and R. A. Gross. “Synthesis and Characterization of an Adipic Acid-Derived Epoxy Resin.” Journal of Polymer Science Part A: Polymer Chemistry, vol. 54, no. 16, pp. 2625-2631, 2016.
[6]S. Liu and Y. Mei. “Behavior of Delaminated Plastic IC Packages Subjected to Encapsulation Cooling, Moisture Absorption and Wave Soldering.” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 18, no. 3, pp. 634-645, 1995.
[7]鄭路,常新龍,趙峰,張博,濕熱環境中複合材料吸濕性研究,纖維複合材料,第2期,pp. 37-39,2007。
[8]L. Ma, B. Sood, and M. Pecht. “Effect of Moisture on Thermal Properties of Halogen-Free and Halogenated Printed-Circuit-Board Laminates.” IEEE Transactions on Device and Materials Reliability, vol. 11, no. 1, pp. 66-75, 2011.
[9]X. J. Fan and C. Yuan. “Effect of Temperature Gradient on Moisture Diffusion in High Power Devices and the Applications in LED Packages.” Paper presented at IEEE Electronic Components and Technology Conference, pp.1466-1470, 2013.
[10]E. H. Wong, K. C. Chan, T. B. Lim, and T. F. Lam. “Non-Fickian Moisture Properties Characterisation and Diffusion Modeling for Electronic Packages.” Paper presented at IEEE Electronic Components and Technology Conference, pp. 302-306, 1999.
[11]E. H. Wong, Y. C. Teo, and T. B. Lim. “Moisture Diffusion and Vapour Pressure Modeling of IC Packaging.” Paper presented at the 48th Electronic Component Technology Conference, pp. 1372-1378, 1998.
[12]T. Y. Tee, X. J. Fan, and T. B. Lim. “Modeling of Whole Field Vapor Pressure During Reflow for Flip Chip and Wire-Bond PBGA Packages.” Paper presented at the 1st International Workshop on Electronic Materials & Packaging, 1999.
[13]E. H. Wong, S. W. Koh, R. Rajoo, and T. B. Lim. “Underfill Swelling and Temperature-Humidity Performance of Flip Chip PBGA Package.” Paper presented at IEEE Electronics Packaging Technology Conference, pp. 258-262, 2000.
[14]E. H. Wong, K. C. Chan, R. Rajoo, and T. B. Lim. “The Mechanics and Impact of Hygroscopic Swelling of Polymeric Materials in Electronic Packaging.” Paper presented at IEEE Electronic Components and Technology Conference, pp. 576-580, 2000.
[15]E. H. Wong, S.W. Koh, K. H. Lee, and R. Rajoo. “Advanced Moisture Diffusion Modeling & Characterisation for Electronic Packaging.” Paper presented at IEEE Electronic Components and Technology Conference, pp. 1297-1303, 2002.
[16]T. Y. Tee and H. S. Ng. “Whole Field Vapor Pressure Modeling of QFN During Reflow with Coupled Hygro-Mechanical and Thermo-Mechanical Stresses.” Paper presented at IEEE Electronic Components and Technology Conference, pp. 1552-1559, 2002.
[17]許育騰,指紋辨識器濕熱結構耦合分析暨可靠度設計,義守大學機械與自動化工程學系碩士論文,2007。
[18]X. J. Fan, S. W. R. Lee, and Q. Han. “Experimental Investigations and Model Study of Moisture Behaviors in Polymeric Materials.” Microelectronics Reliability, vol. 49, no. 8, pp. 861-871, 2009.
[19]許峰瑞,微機電製程壓力感測器之熱-濕-壓-固耦合與可靠度分析,義守大學機械與自動化工程學系碩士論文,2010。
[20]王銘漢,具TSV結構之3D與2.5D封裝在濕熱效應下的應力與翹曲模擬分析,國立中山大學機械與機電工程學系碩士論文,2014。
[21]Y. M. Liu, Z. Ji, P. Chen, X. Wang, N. Ye, and C. T. Chiu. “Moisture Induced Interface Delamination for EMI Shielding Package.” Paper presented at IEEE Components, Packaging and Manufacturing Technology Symposium Japan, pp. 217-220, 2016.
[22]陳威志,溫溼保存條件及時間變動對PBGA構裝體翹曲影響之研究,國立中山大學機械與機電工程學系博士論文,2001。
[23]陳柏琦,晶片尺寸封裝之翹曲模擬與可靠度評估,中國文化大學材料科學與製造研究所碩士論文,2002。
[24]T. Y. Tee, H. S. Ng, Z. Zhong, and J. Zhou. “Board-Level Solder Joint Reliability Analysis of Thermally Enhanced Bgas and Lgas.” IEEE Transactions on Advanced Packaging, vol. 29, no. 2, pp. 284-290, 2006.
[25]吳瑞文,林谷鴻,球格陣列構裝體翹曲及應力分析,工程科技與教育學刊,第4卷,第4期,pp. 475-497,2007。
[26]S. H. Cho, S. J. Cho, and J. Y. Lee. “Estimation of Warpage and Thermal Stress of IVHs in Flip-Chip Ball Grid Arrays Package by FEM.” Microelectronics Reliability, vol. 48, no. 2, pp. 300-309, 2008.
[27]Y. Kim, S. K. Kang, S. D. Kim, and S. E. Kim. “Wafer Warpage Analysis of Stacked Wafers for 3D Integration.” Microelectronic Engineering, vol. 89, pp. 46-49, 2012.
[28]T. C. Chiu and E. Y. Yeh. “Warpage Simulation for the Reconstituted Wafer Used in Fan-out Wafer Level Packaging.” Microelectronics Reliability, vol. 80, pp. 14-23, 2018.
[29]M. Y. Su, L. Q. Cao, T. Y. Lin, F. Chen, J. Li, C. Chen, and G. X. Tian. “Warpage Simulation and Experimental Verification for 320 mm x 320 mm Panel Level Fan-out Packaging Based on Die-First Process.” Microelectronics Reliability, vol. 83, pp. 29-38, 2018.
[30]JEDEC. “Package warpage measurement of surface-mount integrated circuits at elevated temperature.” JESD22-B112A, 2009.