3.
Friesen GM, Jannett TC, Jadallah MA, et al. A comparison of the noise sensitivity of nine QRS detection algorithms.
IEEE Trans Biomed Eng.
1990;
37
(1):85–98. doi: 10.1109/10.43620.
[Friesen GM, Jannett TC, Jadallah MA, et al. A comparison of the noise sensitivity of nine QRS detection algorithms[J]. IEEE Trans Biomed Eng, 1990, 37(1): 85-98.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Martínez JP, Almeida R, Olmos S, et al. A wavelet-based ECG delineator: evaluation on standard databases.
IEEE Trans Biomed Eng.
2004;
51
(4):570–81. doi: 10.1109/TBME.2003.821031.
[Martínez JP, Almeida R, Olmos S, et al. A wavelet-based ECG delineator: evaluation on standard databases[J]. IEEE Trans Biomed Eng, 2004, 51(4): 570-81.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Christov I, Gomez-Herrero G, Krasteva VA, et al. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification.
Med Eng Phys.
2006;
28
(9):876–87. doi: 10.1016/j.medengphy.2005.12.010.
[Christov I, Gomez-Herrero G, Krasteva VA, et al. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification[J]. Med Eng Phys, 2006, 28(9): 876-87.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Jekova I, Bortolan G, Christov I. Assessment and comparison of different methods for heartbeat classification.
Med Eng Phys.
2008;
30
(2):248–57. doi: 10.1016/j.medengphy.2007.02.003.
[Jekova I, Bortolan G, Christov I. Assessment and comparison of different methods for heartbeat classification[J]. Med Eng Phys, 2008, 30(2): 248-57.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Yu SN, Chen YH. Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network.
Pattern Recognit Lett.
2007;
28
(10):1142–50. doi: 10.1016/j.patrec.2007.01.017.
[Yu SN, Chen YH. Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network[J]. Pattern Recognit Lett, 2007, 28(10): 1142-50.]
[
CrossRef
]
[
Google Scholar
]
8.
Martis RJ, Acharya UR, Mandana KM, et al. Cardiac decision making using higher order spectra.
Biomed Signal Process Control.
2013;
8
(2):193–203. doi: 10.1016/j.bspc.2012.08.004.
[Martis RJ, Acharya UR, Mandana KM, et al. Cardiac decision making using higher order spectra[J]. Biomed Signal Process Control, 2013, 8(2): 193-203.]
[
CrossRef
]
[
Google Scholar
]
9.
Zgallai W A. Notice of Violation of IEEE Publication Principles A polycoherence-based ECG signal non-linearity detector[C] //Digital Signal Processing (DSP), 2011 17th International Conference on. IEEE, 2011: 1-6.
10.
Martis RJ, Acharya UR, Min LC. ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform.
Biomed Signal Process Control.
2013;
8
(5):437–48. doi: 10.1016/j.bspc.2013.01.005.
[Martis RJ, Acharya UR, Min LC. ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform[J]. Biomed Signal Process Control, 2013, 8(5): 437-48.]
[
CrossRef
]
[
Google Scholar
]
11.
de Lannoy G, François D, Delbeke J, et al. Feature relevance assessment in automatic inter- patient heart beat classification[C] // Biosignals. 2010: 13-20.
12.
Wu Z, Ding X, Zhang G, et al. A novel features learning method for ECG arrhythmias using deep belief networks[C] //Digital Home (ICDH), 2016 6th International Conference on. IEEE, 2016: 192- 196.
13.
Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks.
IEEE Trans Biomed Eng.
2016;
63
(3):664–75. doi: 10.1109/TBME.2015.2468589.
[Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks[J]. IEEE Trans Biomed Eng, 2016, 63(3): 664-75.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
Zhang Q, Zhou D, Zeng X. PulsePrint: Single-arm-ECG biometric human identification using deep learning[C] //Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 2017 IEEE 8th Annual. IEEE, 2017: 452-456.
15.
Jin LP, Dong J. Deep learning research on clinical electrocardiogram analysis.
Scientia Sinica Informationis.
2015;
45
(3):398.
[Jin LP, Dong J. Deep learning research on clinical electrocardiogram analysis[J]. Scientia Sinica Informationis, 2015, 45(3): 398.]
[
Google Scholar
]
16.
Rajpurkar P, Hannun AY, Haghpanahi M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks.
arXiv preprint arXiv: 01836.
2017
[Rajpurkar P, Hannun AY, Haghpanahi M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[J]. arXiv preprint arXiv: 01836, 2017.]
[
Google Scholar
]
17.
Liu WH, Zhang MX, Zhang YD, et al. Real-time multilead convolutional neural network for myocardial infarction detection.
IEEE J Biomed Health Inform.
2018;
22
(5):1434–44. doi: 10.1109/JBHI.2017.2771768.
[Liu WH, Zhang MX, Zhang YD, et al. Real-time multilead convolutional neural network for myocardial infarction detection[J]. IEEE J Biomed Health Inform, 2018, 22(5): 1434-44.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
Wu M H, Chang E J, Chu T H. Personalizing a Generic ECG Heartbeat Classification for Arrhythmia Detection: A Deep Learning Approach[C] //2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2018: 92-99.
19.
He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C] //2016 Ieee Conference On Computer Vision And Pattern Recognition (Cpvr), 2016: 770-8.
20.
Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C] //30TH Ieee Conference On Computer Vision And Pattern Recognition (Cvpr 2017), 1.2, 2017: 2261-9.
22.
Howard AG, Zhu M, Chen B, et al. Mobilenets:efficient convolutional neural networks for Mobile vision applications.
http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201819013
.
arXiv preprint arXiv:04861.
2017
[Howard AG, Zhu M, Chen B, et al. Mobilenets:efficient convolutional neural networks for Mobile vision applications[J]. arXiv preprint arXiv:04861, 2017.]
[
Google Scholar
]
23.
de Lannoy G, Francois D, Delbeke J, et al. Weighted conditional random fields for supervised interpatient heartbeat classification.
IEEE Trans Biomed Eng.
2012;
59
(1):241–7. doi: 10.1109/TBME.2011.2171037.
[de Lannoy G, Francois D, Delbeke J, et al. Weighted conditional random fields for supervised interpatient heartbeat classification[J]. IEEE Trans Biomed Eng, 2012, 59(1): 241-7.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Clark E, Sejersten M, Clemmensen P, et al. Effectiveness of electrocardiogram interpretation programs in the ambulance setting [C] //CINC: 2009 36TH Annual computers in cardiology conference, 36, 2009: 117.
25.
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.
JAMA.
2016;
316
(22):2402–10. doi: 10.1001/jama.2016.17216.
[Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-10.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Turakhia MP, Hoang DD, Zimetbaum P, et al. Diagnostic utility of a novel leadless arrhythmia monitoring device.
Am J Cardiol.
2013;
112
(4):520–4. doi: 10.1016/j.amjcard.2013.04.017.
[Turakhia MP, Hoang DD, Zimetbaum P, et al. Diagnostic utility of a novel leadless arrhythmia monitoring device[J]. Am J Cardiol, 2013, 112(4): 520-4.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
Banerjee S, Mitra M. Application of cross wavelet transform for ECG pattern analysis and classification.
IEEE Trans Instrum Meas.
2014;
63
(2):326–33. doi: 10.1109/TIM.2013.2279001.
[Banerjee S, Mitra M. Application of cross wavelet transform for ECG pattern analysis and classification[J]. IEEE Trans Instrum Meas, 2014, 63(2): 326-33.]
[
CrossRef
]
[
Google Scholar
]
29.
Li J, Mei XE, Prokhorov D, et al. Deep neural network for structural prediction and lane detection in traffic scene.
IEEE Trans Neural Netw Learn Syst.
2017;
28
(3):690–703. doi: 10.1109/TNNLS.2016.2522428.
[Li J, Mei XE, Prokhorov D, et al. Deep neural network for structural prediction and lane detection in traffic scene[J]. IEEE Trans Neural Netw Learn Syst, 2017, 28(3): 690-703.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]