1.
SELYE H A syndrome produced by diverse nocuous agents.
Nature.
1936;
138
:32. doi: 10.12182/20210160501.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
SZABO S, TACHE Y, SOMOGYI A The legacy of Hans Selye and the origins of stress research: a retrospective 75 years after his landmark brief “letter” to the editor
#
of nature
.
Stress.
2012;
15
(5):472–478. doi: 10.3109/10253890.2012.710919.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
钱令嘉 应激与应激医学
疾病控制杂志
2003;
7
(5):393–396. doi: 10.3969/j.issn.1674-3679.2003.05.008.
[
CrossRef
]
[
Google Scholar
]
4.
FEVRE M L, MATHENY J, KOLT G S Eustress, distress, and interpretation in occupational stress.
J Manage Psychol.
2003;
18
(7):726–744. doi: 10.1108/02683940310502412.
[
CrossRef
]
[
Google Scholar
]
5.
SIES H, BERNDT C, JONES D P Oxidative stress.
Annu Rev Biochem.
2017;
86
:715–748. doi: 10.1146/annurev-biochem-061516-045037.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
POPRAC P, JOMOVA K, SIMUNKOVA M, et al Targeting free radicals in oxidative stress-related human diseases.
Trends Pharmacol Sci.
2017;
38
(7):592–607. doi: 10.1016/j.tips.2017.04.005.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
WANG K, JIANG J, LEI Y, et al Targeting metabolic-redox circuits for cancer therapy.
Trends Biochem Sci.
2019;
44
(5):401–414. doi: 10.1016/j.tibs.2019.01.001.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
BELHADJ SLIMEN I, NAJAR T, GHRAM A, et al Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review.
Int J Hyperthermia.
2014;
30
(7):513–523. doi: 10.3109/02656736.2014.971446.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
ZHANG Z, ZHANG L, ZHOU L, et al. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol, 2019, 25: 101047[2020-12-10]. https://doi.org/10.1016/j.redox.2018.11.005.
12.
YUAN K, LEI Y, CHEN H, et al HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3.
Cell Death Differ.
2016;
23
(4):616–627. doi: 10.1038/cdd.2015.129.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
LIU Y, GUO J-Z, LIU Y, et al. Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth. Nat Commun, 2018, 9(1): 4429[2020-12-10]. https://doi.org/10.1038/s41467-018-06841-7.
14.
LAFORGE M, ELBIM C, FR RE C, et al Tissue damage from neutrophil-induced oxidative stress in COVID-19.
Nat Rev Immunol.
2020;
20
(9):515–516. doi: 10.1038/s41577-020-0407-1.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
IVANOV A V, VALUEV-ELLISTON V T, IVANOVA O N, et al. Oxidative stress during HIV infection: mechanisms and consequences. Oxid Med Cell Longev, 2016, 2016: 8910396[2020-12-10]. https://doi.org/10.1155/2016/8910396.
16.
WANG S, CHEN Z, ZHU S, et al. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer. Redox Biol, 2020, 28: 101319[2020-12-10]. https://doi.org/10.1016/j.redox.2019.101319.
18.
DUPR‐CROCHET S, ERARD M, N ΒE O. ROS production in phagocytes: why, when, and where? J Leukoc Biol, 2013, 94(4): 657-670.
19.
JONES R M, NEISH A S Redox signaling mediated by the gut microbiota.
Free Radic Biol Med.
2017;
105
:41–47. doi: 10.1016/j.freeradbiomed.2016.10.495.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
LIGUORI I, RUSSO G, CURCIO F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging, 2018, 13: 757[2020-12-10]. https://doi.org/10.2147/CIA.S158513.
21.
WARBURG O, POSENER K, NEGELEIN E The metabolism of cancer cells.
Biochem Z.
1924;
152
:319–344.
[
Google Scholar
]
22.
VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Science.
2009;
324
(5930):1029–1033. doi: 10.1126/science.1160809.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
MUNIR R, LISEC J, SWINNEN J V, et al Lipid metabolism in cancer cells under metabolic stress.
Br J Cancer.
2019;
120
(20):1090–1098.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
24.
NIEMAN D C, PEDERSEN B K Exercise and immune function.
Sports Med.
1999;
27
(2):73–80. doi: 10.2165/00007256-199927020-00001.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
田盈雪, 李洁玲, 田宝 运动创伤后应激障碍及其干预
中国康复理论与实践
2012;
18
(10):944–947.
[
Google Scholar
]
26.
XU C, LEE S K, ZHANG D, et al The gut microbiome regulates psychological-stress-induced inflammation.
Immunity.
2020;
53
(2):417–428. doi: 10.1016/j.immuni.2020.06.025.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
高钰琪, 黄缄 炎症反应与高原病
第三军医大学学报
2016;
38
(3):215–219.
[
Google Scholar
]
28.
王超臣, 朱春雷, 罗勇军 心理应激对高原病的影响及作用机制研究进展
人民军医
2017;
60
(7):714–717.
[
Google Scholar
]
29.
薄磊, 赵志文, 刘金秀, 等 高原适应性的基因学研究进展
第二军医大学学报
2014;
35
(10):1126–1132.
[
Google Scholar
]
30.
罗莹莹, 马得勋, 刘承军, 等 核事故医学应急救援护理工作现状及展望
中国辐射卫生
2018;
27
(4):372–375.
[
Google Scholar
]