相关文章推荐
from scipy import stats import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D mu, sigma = 0, 0.1 x = np.random.normal(mu, sigma, 1000) y = np.random.normal(mu, sigma, 1000) z = np.random.normal(mu, sigma, 1000) xyz = np.vstack([x,y,z]) density = stats.gaussian_kde(xyz)(xyz) idx = density.argsort() x, y, z, density = x[idx], y[idx], z[idx], density[idx] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x, y, z, c=density) plt.show()

这样做效果很好!然而,我的真实数据包含成千上万的数据点,计算kde和散点图变得非常慢。

我的真实数据的一个小样本。

我的研究表明,一个更好的选择是在一个网格上评估高斯克德。我只是不确定如何在三维中这样做。

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D 
mu, sigma = 0, 0.1 
x = np.random.normal(mu, sigma, 1000)
y = np.random.normal(mu, sigma, 1000)
nbins = 50
xy = np.vstack([x,y])
density = stats.gaussian_kde(xy) 
xi, yi = np.mgrid[x.min():x.max():nbins*1j, y.min():y.max():nbins*1j]
di = density(np.vstack([xi.flatten(), yi.flatten()]))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.pcolormesh(xi, yi, di.reshape(xi.shape))
plt.show() 
    
1 个评论
对于这个应用,我认为你可能最好使用mayavi,它在3D可视化应用方面更强大。这里有一个例子从文档中可以看出,你应该可以开始了。
python
matplotlib
scipy
mayavi
kernel-density
nv_wu
nv_wu
发布于 2014-08-13
1 个回答
nv_wu
nv_wu
发布于 2014-08-18
已采纳
0 人赞同

感谢mwaskon建议使用Mayavi库。

我在Mayavi中重新创建了密度散点图,如下所示。

import numpy as np
from scipy import stats
from mayavi import mlab
mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)
z = 10*np.random.normal(mu, sigma, 5000)
xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)
density = kde(xyz)
# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')
pts = mlab.points3d(x, y, z, density, scale_mode='none', scale_factor=0.07)
mlab.axes()
mlab.show()

将scale_mode设置为'none'可以防止字形按照密度向量的比例被缩放。此外,对于大型数据集,我禁用了场景渲染,并使用掩码来减少点的数量。

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')
figure.scene.disable_render = True
pts = mlab.points3d(x, y, z, density, scale_mode='none', scale_factor=0.07) 
mask = pts.glyph.mask_points
mask.maximum_number_of_points = x.size
mask.on_ratio = 1
pts.glyph.mask_input_points = True
figure.scene.disable_render = False 
mlab.axes()
mlab.show()

接下来,要在一个网格上评估高斯克德。

import numpy as np
from scipy import stats
from mayavi import mlab
mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)    
z = 10*np.random.normal(mu, sigma, 5000)
xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)
# Evaluate kde on a grid
xmin, ymin, zmin = x.min(), y.min(), z.min()
xmax, ymax, zmax = x.max(), y.max(), z.max()
xi, yi, zi = np.mgrid[xmin:xmax:30j, ymin:ymax:30j, zmin:zmax:30j]
coords = np.vstack([item.ravel() for item in [xi, yi, zi]]) 
density = kde(coords).reshape(xi.shape)
# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')
grid = mlab.pipeline.scalar_field(xi, yi, zi, density)
min = density.min()
max=density.max()
mlab.pipeline.volume(grid, vmin=min, vmax=min + .5*(max-min))
mlab.axes()
mlab.show()
mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)
z = 10*np.random.normal(mu, sigma, 5000)
xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)
# Evaluate kde on a grid
xmin, ymin, zmin = x.min(), y.min(), z.min()
xmax, ymax, zmax = x.max(), y.max(), z.max()
xi, yi, zi = np.mgrid[xmin:xmax:30j, ymin:ymax:30j, zmin:zmax:30j]
coords = np.vstack([item.ravel() for item in [xi, yi, zi]]) 
# Multiprocessing
cores = multiprocessing.cpu_count()
pool = multiprocessing.Pool(processes=cores)
results = pool.map(calc_kde, np.array_split(coords.T, 2))
density = np.concatenate(results).reshape(xi.shape)
# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')
grid = mlab.pipeline.scalar_field(xi, yi, zi, density)
min = density.min()
max=density.max()
 
推荐文章