The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023 Jul 28; 48(7): 1086–1097.
PMCID: PMC10930035

Language: Chinese | English

cGAS-STING通路在代谢性心血管疾病中的作用

Role of cGAS-STING signaling pathway in cardiometabolic diseases

丁 慧晴

中南大学湘雅二医院心血管内科, 410011

Find articles by 丁 慧晴

周 玉莹

湘潭市中心医院心血管内科,湖南 411199

Find articles by 周 玉莹

印 旨意

中南大学湘雅二医院输血科, 410011

Find articles by 印 旨意

台 适

中南大学湘雅二医院心血管内科, 中南大学湘雅二医院心血管内科, 410011

湘潭市中心医院心血管内科,湖南 411199
中南大学湘雅二医院输血科, 410011
corresponding author Corresponding author.
台适 ,Email: nc.ude.usc@7102ihsiat , ORCID: 0000-0002-5802-2910
cGAS-STING 信号通路的分子机制

免疫炎症反应不仅是机体消除细菌、真菌、病毒等病原微生物的基本防御过程,也是机械刺激或代谢危险因素引起组织器官损伤的必要修复措施。虽然蛋白质、脂质和多糖可以激活免疫传感器引起的炎症级联反应,但这些配体易通过修饰机制逃避传感器的检测。相比之下,核酸成分及结构相对恒定,因而得以稳定识别。体内存在多种DNA感受器,但除cGAS、黑素瘤2(absent in melanoma 2,AIM2)外,其他大部分DNA感受器在体内的生物学作用未得到确切的验证 [ 6 - 7 ]

1.1. cGAS

cGAS对dsDNA的识别具有序列非特异性及长度依赖性的特点,这扩大了cGAS免疫应答的范围,并避免了cGAS不恰当激活。序列非特异性是指cGAS对dsDNA的识别不受到脱氧核苷酸序列限制,可识别多种细胞来源的核DNA和线粒体DNA(mitochondrial DNA,mtDNA)。因此,cGAS除识别外源性DNA(微生物DNA、死亡细胞DNA、分泌囊泡包裹的DNA等)外,还能够被内源性DNA(mtDNA、包装成微核的损伤DNA等)激活 [ 8 ] ,这为cGAS-STING调控无菌性免疫炎症反应、细胞衰老及凋亡奠定了基础。并且研究 [ 9 ] 发现cGAS的配体并不局限于DNA,细菌及凋亡细胞通过缝隙连接、外泌体或出芽病毒分泌的胞外环二核苷酸(extracellular cyclic dinucleotides,eCDNs)也可激活邻近细胞的cGAS。长度依赖性是指cGAS在长DNA(长度>45 bp)浓度极低的条件下即可发生强烈的催化反应,而较短的DNA(~20 bp)结合cGAS后不能使其有效激活,这在准确处理病原微生物刺激、线粒体氧化应激损伤中至关重要 [ 10 ] 。大部分细菌、病毒等病原微生物DNA较长,cGAS能够快速识别低水平进入宿主的微生物DNA而触发保护性免疫反应,同时也避免了细胞分裂和DNA修复产生的短DNA引起病理性免疫反应。DNA除了在长度方面调控cGAS激活,研究 [ 11 - 12 ] 还发现线粒体转录因子A(mitochondrial transcription factor A,mtTFA)可引起长mtDNA发生U形弯曲,促进mtDNA对cGAS的强烈激活,进而上调损伤线粒体的自噬,从而维持线粒体稳态。

cGAS是以“胞质DNA传感器”的概念而被首次提出的 [ 13 ] ,并在多种类型的细胞中发挥着识别细胞质DNA、诱导I型干扰素(interferon 1,IFN-1)及炎症因子转录合成的作用 [ 14 ] 。但cGAS的亚细胞定位并不局限于细胞质,也可存在于细胞核或锚定于细胞膜。cGAS的亚细胞定位差异会对细胞的生物学功能产生何种影响,尚需进一步探讨。

在细胞核中可检测出少量cGAS,但大部分定位于细胞质。随后研究 [ 15 ] 发现:在细胞稳态时,无论细胞周期阶段或cGAS的活化状态如何,绝大多数cGAS存在于细胞核。细胞在阻止cGAS与核染色质相互作用方面“策划”了各种措施,如cGAS的N端过度磷酸化 [ 16 ] 、自身整合因子(barrier-to-autointegration factor,BAF)优先结合DNA的竞争机制 [ 17 ] 。这出现一个非常矛盾的现象:聪明的细胞既要把核蛋白cGAS固定在DNA最丰富的区域,又要采取一系列的措施防止其激活 [ 18 ] 。一方面,核蛋白cGAS发挥着储备功能:在外源性DNA刺激前,细胞质中的cGAS不足以引发对dsDNA的强健免疫,因此在核cGAS中存在功能性核输出信号,这允许储备的核cGAS转运至细胞质 [ 19 ] 。另一方面,核蛋白cGAS担任了免疫监视的使命:当细胞自身DNA损伤或染色质不稳定,cGAS与异常染色质片段共同以微核的形式离开细胞核,随后微核在细胞质中破裂,异常染色质片段激活cGAS [ 20 - 21 ]

除了在细胞质及细胞核中的亚细胞定位,cGAS也可通过N端的磷酸肌醇结合结构域锚定于细胞膜。并且,cGAS成为膜蛋白情况主要发生在人和小鼠巨噬细胞中 [ 22 ] 。如果通过基因突变的方式使cGAS缺乏该结构域,cGAS被错误定位到细胞质和细胞核,并且对自身DNA反应迅速且强烈,但对病毒感染反应较弱 [ 22 ]

1.2. STING

STING主要锚定于内质网膜,被cGAS催化产生的cGAMP激活。STING-cGAMP复合物从内质网转移到高尔基体,招募并磷酸化TANK结合激酶1(TANK-binding kinase 1,TBK1)。被活化的TBK1使STING的保守共有序列(phosphorylation of a conserved consensus motif,pLxIS)发生磷酸化,随后干扰素调节因子3(interferon regulatory factor 3,IRF3)与磷酸化的pLxIS相互结合从而靠近TBK1,促进IRF3的磷酸化 [ 23 ] 。最终磷酸化的IRF3进入细胞核与IFN-β启动子结合,发挥调控I型干扰素以及其他免疫相关细胞因子表达的作用 [ 24 - 25 ]

cGAS-STING的信号通路主要包括cGAS-STING-TBK1-IRF3经典通路和cGAS-STING-TBK1-核因子-κB(nuclear factor kappa-B,NF-κB)通路,前者促进IFN-1的转录合成,后者促进炎症细胞因子(如TNF-α、IL-6、IL-1β等)的合成释放,二者协同调控炎症反应并介导细胞衰老、自噬和凋亡 [ 26 - 28 ]

2. cGAS 的调节机制及生物学效应

2.1. cGAS-STING 通路介导的免疫炎症反应

各种病理性刺激可导致自身细胞质DNA的异常释放、有核细胞死亡后DNA泄露或内质网应激,激活cGAS-STING信号通路,从而引起促炎细胞因子慢性产生而触发无菌性炎症性疾病(如主动脉瘤与夹层、动脉粥样硬化(atherosclerosis,AS)、心肌梗死、心力衰竭、非酒精性脂肪性肝病等) [ 29 - 31 ] 。编码DNA外切酶的基因 Trex1 (three prime repair exonuolease 1)缺失导致细胞质中损伤DNA的积累,引起cGAS-STING信号通路过度激活和炎症细胞因子及IFN-1的分泌增加,从而引起致命性的炎症性疾病 [ 32 ] 。而在 Trex1 缺失小鼠模型中进行 STING 基因敲除,各组织的炎症反应显著减轻。并且研究 [ 33 ] 发现:小鼠肾的缺血再灌注损伤提升受体相互作用蛋白3(receptor-interacting protein 3,RIP3)的水平并促进其活性,而后RIP3与线粒体相互作用导致线粒体的结构、功能障碍及mtDNA释放,其中mtDNA激活cGAS-STING-p65通路,增加了促炎因子(如IL-6,ICAM-1和TNF-α)的转录,从而引起免疫炎症反应及细胞死亡。这些研究 [ 32 - 34 ] 强调了cGAS-STING通路的过度激活是导致无菌性炎症性疾病病理特征的关键因素,并提示cGAS抑制剂对缓解炎症反应、改善疾病预后的潜在治疗作用。

代谢性毒性因素可通过cGAS-STING-TBK1-IRF3经典通路和cGAS-STING-TBK1-NF-κB途径介导反复免疫炎症反应,导致不同程度的组织、器官慢性损伤。研究 [ 35 - 36 ] 报道:棕榈酸(palmiticacid,PA)诱导线粒体自噬相对受损,引起线粒体结构完整性破坏,导致mtDNA通过B细胞淋巴瘤/白血病-2相关蛋白X/B细胞淋巴瘤/白血病-2相关激酶(B cell lymphoma/leukmia-2 associated X/B cell lymphoma/leukmia-2 associated kinase)依赖的线粒体外膜透化作用或线粒体膜通透性转换孔泄露入细胞质中,引起cGAS-STING-TBK1-IRF3经典通路的激活而促进内皮细胞中血管细胞黏附分子1(vascular cell adhesion molecule 1,VCAM-1)和细胞间黏附分子1(intercellular cell adhesion molecule-1,ICAM-1)等黏附因子的分泌增加,导致单核细胞-内皮细胞黏附,促进内皮细胞炎症。此外,在高脂血症小鼠的AS斑块中,巨噬细胞在IRF3的调控下向促炎性M1表型极化 [ 37 ] 。而STING-TBK1-NF-κB途径主要通过激活经典的炎症细胞因子而诱导炎症反应。研究 [ 38 ] 发现:脂质超负荷状态下的小鼠,其肝细胞mtDNA诱导库普弗细胞(Küpffer cells,KCs)通过STING-TBK1-NF-κB途径促进TNF-α、IL-6表达,引起肝脂肪变性、促进慢性炎症的发生并加速其纤维化。因此,cGAS-STING-TBK1-IRF3通路上调IFN-Ⅰ的转录而引起黏附因子分泌、细胞的表型转化等,而cGAS-STING-TBK1-NF-κB通路促进经典炎症细胞因子的释放,二者从不同方面驱动免疫炎症反应 [ 39 ]

2.2. cGAS-STING 通路介导的自噬与凋亡

自噬是将自身大分子物质或细胞器成分通过自噬泡传递到溶酶体降解再利用的过程。生理水平的自噬具有促进细胞修复、更新并维持细胞稳定的积极作用。自噬过度激活导致正常蛋白质及重要细胞器的损伤,引起细胞结构及功能障碍,甚至导致细胞死亡;自噬过度抑制促进错误折叠蛋白质及氧化损伤的mtDNA的积累,引起内质网、线粒体应激,导致细胞的衰老甚至死亡 [ 40 ] 。cGAS-STING通路通过对细胞自噬水平的调控表现出“双刃剑”效应,在机体应对病理刺激和危险因素时扮演着不同的角色。

在人类进化过程中,STING蛋白诱导自噬是先于调控IFN-1转录表达的一种原始且高度保守的功能 [ 12 ] 。cGAMP结合并活化STING后,STING-cGAMP复合物从内质网转移到内质网-高尔基中间体(endoplasmic reticulum-golgi intermediate compartment,ERGIC)。与STING结合的ERGIC通过磷脂酰肌醇相互作用蛋白2(WD-repent protein interacting with phosphoinositides,WIPI2)依赖性机制作为微管相关蛋白轻链3(microtubule-associated proteins light chain 3,LC3)募集和脂化的来源,这是cGAS-STING通路诱导新月形或半环形自噬前体形成的关键步骤 [ 12 , 41 ] 。LC3形成的脂膜靶向包裹错误折叠的蛋白质、异常的DNA及受损的细胞器后与溶酶体融合,形成自噬溶酶体,其内膜及包裹的部分被溶酶体酶分解 [ 12 , 41 ] 。另外,被激活后的STING通过反式高尔基体网状结构(trans-Golgi network,TGN)形成囊泡,再通过多泡体(multivesicularbody,MVB)途径在溶酶体中降解 [ 12 ] 。STING介导的自噬由dsDNA开启,因此这一过程对细胞质内异常DNA的清除至关重要。同时,对于避免STING过度诱导细胞自噬引起细胞凋亡也发挥着不可替代的作用。

除了STING可以促进自噬外,TBK1也可通过促进自噬降解STING通路中的关键蛋白而进行负反馈调节,防止该通路介导的免疫反应过度激活、维持细胞内的稳态。活化的TBK1可选择性磷酸化自噬底物P62的403位点丝氨酸,引起P62的泛素结合结构域(ubiquitin binding domain,UBD)与STING中K63连接的泛素链亲和性增加,随后与STING结合的P62通过其LC3结合区域(LC3-interacting region,LIR)使STING与自噬体结合,促进STING的降解 [ 42 ] 。因此,TBK1磷酸化P62促进STING的自噬可引起STING的靶向降解,从而防止该通路的过度激活。而IFN-1可通过Janus激酶/信号转导和转录激活因子(Januski-nase/signal transducer and activator of transcription,JAK/STAT)和脂酰肌醇3激酶/蛋白激酶B/哺乳动物雷帕霉素靶蛋白(phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin,PI3K/Akt/mTOR)信号途径调节细胞自噬,从而实现IFN-1调控炎症反应、抑制增殖、清除病毒的功能 [ 43 ]

因此,可推论在机体细胞受到短期轻微的病理刺激时,cGAS-STING通路的各信号分子通过各种相关机制促进自噬,清除异常DNA、损伤的细胞器、错误折叠的蛋白质,促进细胞的更新,从而维持细胞及组织器官的稳态。而当细胞受到剧烈的病理刺激时可促进cGAS-STING通路高水平激活,从而导致自噬依赖性细胞死亡。研究 [ 44 ] 发现:用于人类免疫缺陷病毒感染的抗病毒药物扎西他滨通过诱导线粒体应激导致mtDNA泄露入细胞质,激活cGAS-STING通路,在STING平面导致自噬过度激活并引起细胞内脂质过氧化,从而触发自噬依赖性铁死亡。而这项研究 [ 44 ] 将扎西他滨诱导的自噬依赖性铁死亡用于抑制胰腺癌细胞的生长,可为胰腺癌的治疗提供新的方向。此外,cGAS-STING通路诱发的溶酶体细胞死亡(lysosomal cell death,LCD)也是细胞程序性死亡的重要机制 [ 45 ] 。人体髓系细胞的细胞质DNA可激活cGAS-STING通路,STING激活后转移到溶酶体并诱导溶酶体膜通透性增加,导致了STING依赖性LCD [ 46 ]

病理刺激除可以通过cGAS-STING通路的激活而促进细胞自噬外,某些代谢性危险因素可能介导该通路激活而抑制细胞自噬功能,导致细胞活性降低。研究 [ 47 ] 发现:心肌细胞以PA浓度依赖的方式激活cGAS-STING-IRF3通路,而后降低心肌细胞的自噬水平和生存率。而PA引起的心肌细胞自噬功能降低可以被cGAS敲低所逆转 [ 47 ] 。虽然PA如何激活该通路及该通路如何引起心肌细胞自噬水平降低的具体分子机制并未详细阐明,但该研究提示cGAS-STING通路对自噬的调控是具有多向性的。

2.3. cGAS-STING 通路介导的细胞衰老相关分泌表型

细胞衰老是由衰老诱发因素(氧化应激、紫外线辐射、化学药物等)导致DNA损伤反应(DNA-damage response,DDR)触发,表现为以p16INK4a/Rb和p19ARF/p53/p21Cip1信号通路介导的细胞周期停滞及引起慢性炎症及组织功能障碍的衰老相关分泌表型(senescence-associated secretory phenotype,SASP)为特征的多步骤过程,其发生的累积被认为是机体衰老的一个基本驱动因素 [ 48 - 51 ] 。cGAS-STING信号通路通过监测内源性损伤的DNA促进细胞衰老的发展进程并驱动 SASP 基因的表达。研究 [ 52 ] 表明,由氧化应激诱导的衰老细胞胞质染色质片段可激活cGAS-STING信号通路,进而触发SASP的旁分泌。并且,包括氧化应激、辐照、癌基因活化及药理学诱导等多种衰老触发因素都可激活cGAS-STING信号通路,进而诱导SASP的转录表达,这提示cGAS-STING通路的激活可能是细胞衰老的共同特征 [ 52 - 53 ] 。最新研究 [ 54 ] 发现:可能存在一种非规范化激活方式即PERK(dsRNA-dependent protein kinase-like endoplasmic reticulum kinase,PERK)-真核起始因子2α(eukaryotic initiation factor 2α,eIF2α)途径。STING-PERK-eIF2α通路在进化上是原始的,并且其激活优先于STING-TBK1-IRF3通路 [ 54 ] 。定位于内质网的STING与cGAMP结合并被激活后,通过激活PERK促进eIF2α发生磷酸化,从而在翻译起始阶段抑制帽依赖性mRNA的翻译,并抑制器官的纤维化。该研究 [ 54 ] 进一步发现:在对STING进行重建使其可激活PERK而失去活化TBK1的功能后,衰老诱发因素仍可显著促进细胞衰老,表现为衰老相关β-半乳糖苷酶与SASP分泌增加。因此调节细胞衰老与器官纤维化可能是STING蛋白保守且古老的功能。

研究 [ 55 ] 发现:在血管平滑肌细胞(vascular smooth muscle cell,VSMC)中持续的端粒损伤可诱导细胞衰老,并通过cGAS-STING-TBK1信号通路在驱动血管疾病的持续性炎症方面起重要作用。该研究 [ 55 ] 还发现:应激诱导的端粒损伤可促进VSMCs衰老,导致细胞质中核来源的DNA片段激活cGAS-STING-TBK1信号通路,从而诱导部分SASP细胞因子(如IL1α、IL8)的表达,分泌的SASP成分介导各种免疫和炎症细胞的募集。因此,cGAS-STING通路是将DNA损伤与细胞衰老相联系的重要桥梁,并分泌SASP参与衰老相关的组织器官结构损伤与功能障碍。

3. cGAS-STING 通路在心血管系统中的病理生理作用

心血管细胞各司其职,共同维持心血管结构完整性与血流动力学稳定。各种危险因素可引起心血管细胞的cGAS-STING通路激活,参与心血管病理损伤。

3.1. 心肌细胞

心肌细胞的肌丝滑行在宏观上表现为心脏的收缩与舒张,其规律运动维持着血流动力学的稳定,对机体各组织器官的血液供应至关重要。危险因素通过激活心肌细胞的cGAS-STING通路引起心肌细胞的炎症及凋亡,在结构上表现为心肌肥厚、心肌纤维化的心脏重构,在功能上表现为心脏舒张或收缩功能障碍。研究 [ 56 ] 发现:烟雾暴露通过心肌细胞的自噬受损引起cGAS-STING通路激活,促进心肌细胞TNF-α、IL-1β的分泌及心肌细胞纤维化,在超声心动图上表现为左室缩短率及左室射血分数下降。此外,代谢相关危险因素也与心肌细胞的cGAS-STING通路密切相关 [ 57 ] 。脂毒性PA可引起心肌细胞线粒体产生过量的活性氧(mitochondrial reactive oxygen species,mtROS)而破坏线粒体稳态,从而导致mtDNA的氧化损伤并释放入细胞质,细胞质mtDNA通过对cGAS-STING通路的激活触发NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)介导的细胞焦亡,并引起一系列的炎症级联反应,最终导致心肌细胞肥大及糖尿病心肌病恶化 [ 57 ]

3.2. 血管内皮细胞

血管内皮细胞作为炎症细胞浸润及各种血浆蛋白质通透的“守门人”,在维持血管稳态及体液平衡中发挥着至关重要的作用 [ 58 ] 。血管内皮细胞损伤介导的血管屏障破坏是多种心血管疾病的核心致病因素,而cGAS-STING通路不仅促进内皮细胞炎症性损伤,而且还通过抑制内皮细胞再生而阻止内皮细胞修复。PA引起脂肪组织血管内皮细胞的线粒体损伤导致mtDNA泄露入细胞质,从而引起cGAS-STING-IRF3途径激活,活化的IRF3与ICAM-1的启动子结合而促进其表达,诱导单核细胞与血管内皮细胞的粘附并促进内皮细胞炎症 [ 35 ] 。研究 [ 35 , 59 ] 进一步使用siRNA敲除STING,减弱了PA诱导的单核细胞-内皮细胞粘附,并且在一定程度上抑制了脂肪组织炎症,发挥了缓解胰岛素抵抗的作用。因此,抑制该通路可能是预防代谢性心血管疾病及缓解胰岛素抵抗的潜在治疗靶点。此外,cGAS-STING通路还可通过抑制细胞增殖关键调节因子Yes关联蛋白(Yes associated protein,YAP)的信号转导,从而抑制内皮细胞损伤后的再生 [ 60 - 61 ] 。研究 [ 61 ] 发现:细胞内毒素脂多糖通过激活半胱天冬酶-11引起孔隙分子消皮素D(gasdermin D,GSDMD)将mtDNA释放到细胞质基质中,从而导致cGAS-STING途径的激活。这一过程可诱导细胞周期调节转录因子YAP1的磷酸化失活和细胞周期蛋白D的基因转录受损,从而抑制内皮细胞损伤后的增殖。

3.3. VSMC

VSMC对血管的结构起着支持作用并调节着血流动力学的稳定,病理刺激促进其发生钙化、凋亡、炎症,从而导致血管老化、主动脉瘤与夹层,AS等心血管损坏。研究 [ 62 ] 发现:在慢性肾脏病载脂蛋白E缺乏的环境下,氧化应激诱导线粒体损伤,mtDNA通过激活cGAS-STING-IRF3通路促进IFN-1的转录与表达,导致VSMC的衰老并促进其向炎症分泌表型转化,最终导致AS斑块的不稳定,表现为纤维帽面积减少和坏死核心区域增加。

3.4. 巨噬细胞

在病理刺激的条件下,cGAS-STING通路可通过不同途径诱导促进巨噬细胞分泌炎症细胞因子、巨噬细胞表型转化及通过上调吞噬相关受体的表达增强其吞噬功能。研究 [ 63 ] 发现:在新型冠状病毒感染(corona virus disease 2019,COVID-19)中,患者的肺部组织及皮肤血管均提示内皮细胞的cGAS受到mtDNA的累积刺激以指导IFN-1表达,最终导致内皮细胞凋亡。而巨噬细胞在吞噬死亡内皮细胞的DNA后激活cGAS-STING通路,通过促进IFN-1表达引起促炎细胞因子TNF、IL-6、IL-1β和IL-1α的分泌增加,最终导致严重的肺部及血管炎症。除了诱导巨噬细胞分泌炎性因子外,cGAS-STING通路也参与了巨噬细胞表型的转化。巨噬细胞的表型可被传统的分类分为经典激活的促炎M1表型和替代激活的抗炎M2表型 [ 64 ] ,而代谢危险因素可通过cGAS-STING通路促进巨噬细胞向M1表型极化。研究 [ 65 ] 发现:AS斑块中游离dsDNA及氧化损伤的DNA被巨噬细胞吞噬后,通过激活cGAS-STING通路调控信号转导与转录激活因子1(signal transducerand activator of transcription 1,STAT1),从而介导巨噬细胞M1表型转化。此外,代谢危险因素促进炎症因子的表达与释放,还可通过激活cGAS增强巨噬细胞对脂质的摄取,从而促进泡沫细胞的形成 [ 65 ]

4. cGAS-STING 通路参与代谢性心血管疾病的调控

代谢性心血管病是能量摄入与消耗失衡引起的糖脂代谢紊乱,该代谢异常进而导致心血管结构与功能损害的临床综合征 [ 3 ] 。糖脂代谢紊乱可触发内皮细胞、VSMC、心肌细胞及各种炎症细胞发生线粒体损伤或内质网应激,激活 cGAS-STING通路或其下游通路,参与代谢性心血管疾病的发生与发展。

4.1. cGAS-STING 通路与动脉粥样性斑块

AS是大、中动脉内由脂质和炎症共同驱动的慢性进展性疾病,是临床心血管事件的主要原因 [ 66 ] 。早有研究 [ 67 ] 报道:在AS斑块中的内皮细胞、平滑肌细胞、巨噬细胞普遍存在DNA损伤。在代谢危险因素的作用下,DNA损伤后异常分布可被cGAS感应识别,引起炎症细胞因子的表达分泌及细胞表型转化,促进AS的发生及AS粥样斑块的不稳定。

据报道 [ 37 ] :高脂喂养载脂蛋白E缺陷小鼠的AS斑块中,DNA损伤增加,cGAMP水平升高。而巨噬细胞的促炎作用是AS发生、发展的基本特征,该研究还进一步发现了巨噬细胞中损伤的mtDNA可通过cGAS-STING-TBK1通路和STING-IKK-NF-κB通路促进多种炎性细胞因子的表达,导致AS的加重 [ 37 ] 。此外,有研究 [ 65 ] 发现:在AS斑块中,cGAS通过Toll样受体(Toll-like receptors,TLR)、STAT、IRF以及IFN的协同信号加剧炎症级联反应,触发巨噬细胞向M1极化,并且通过上调与胆固醇摄取相关的分子来增加脂质沉积。并且该研究 [ 65 ] 进一步抑制cGAS,发现巨噬细胞通过阻碍胆固醇摄取而非促进胆固醇外流的方式而抑制泡沫细胞的形成。

除巨噬细胞外,VSMC的表型转化及内皮细胞向间充质细胞的转化及功能障碍在AS的发展中也发挥着至关重要的作用 [ 62 ] 。AS斑块中,血管平滑肌细胞氧化应激诱导的线粒体损伤,导致mtDNA释放从而激活cGAS-STING-IFN-I通路 [ 62 ] 。IFN-1以自分泌和旁分泌的方式通过促进VSMC的衰老和表型转换,导致纤维帽型VSMC减少及纤维帽变薄,最终导致了AS斑块的不稳定性 [ 62 ] 。此外,有研究 [ 68 ] 发现:VSMC在PA诱导下,通过mtDNA介导激活cGAS-STING通路从而促进内皮细胞-间充质转化 (endothelial-mesenchymal transition,EndMT)。在EndMT过程中,VSMC由内皮表型转化为间充质表型,表现为内皮细胞一氧化氮合酶(endothelial nitric oxide synthase,eNOS)和VE钙黏蛋白(vascularendothelial cell cadherin,CD144)等内皮表型标志物的下调,以及间充质表型标志物[如α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)和波形蛋白]的上调,进而引起血管内皮细胞产生一氧化氮的能力下降及调节血管舒缩的功能障碍,最终导致AS的快速进展 [ 68 - 70 ]

4.2. cGAS-STING 通路参与主动脉瘤和主动脉夹层

主动脉瘤和夹层(aortic aneurysm and dissection,AAD)是由于血管内膜破裂、VSMC的进行性丢失、细胞外基质的降解及持续性的血管炎症引起的主动脉壁结构完整性的丧失 [ 71 - 72 ] 。VSMC的丢失及表型转换、炎症细胞因子的分泌、基质金属蛋白酶(matrix metalloprotein,MMP)活性增加、活性氧的产生增多、自噬缺陷和衰老增加促进了主动脉瘤的发展,当动脉瘤逐渐恶化,进展到无法适应内部压力时,就会发生主动脉夹层或破裂 [ 71 - 72 ] 。上述研究表明,细胞质DNA引起cGAS-STING通路的激活在AAD及破裂中起着推动作用。

在AAD患者的主动脉组织特别是VSMC和巨噬细胞中发现STING、TBK1和IRF3的表达和磷酸化显著上调,并且存在严重的DNA损伤及DNA泄漏到患病组织中的细胞质 [ 73 ] 。这提示在AAD患者的主动脉组织细胞质中损伤的DNA激活cGAS-STING-TBK1通路。该研究 [ 73 ] 进一步发现:cGAS-STING通路是主动脉VSMC凋亡与巨噬细胞活化之间相联系的重要桥梁。在高脂饮食及血管紧张素Ⅱ组合诱导的AAD模型小鼠的血管平滑肌中发现存在ROS诱导细胞质DNA水平增加而激活cGAS-STING通路,诱导VSMC的坏死及凋亡 [ 73 ] 。受损的主动脉血管平滑肌释放DNA,该DNA被巨噬细胞吞噬后激活cGAS-STING-IRF3通路,而IRF3与MMP9启动子结合并促进MMP的表达,从而引起血管弹性纤维的降解,促进AAD的进展 [ 73 ] 。因此,cGAS-STING通路的激活参与了主动脉细胞损伤和炎症的恶性循环,加速AAD的形成和进展。

4.3. cGAS-STING 通路与心力衰竭

心力衰竭(heart failure,HF)以心脏收缩和/或舒张功能障碍为主要特征,是高血压、缺血性心脏病、心肌梗死、糖尿病心肌病等心血管疾病的终末阶段。心脏重塑已被普遍认为是这些心血管疾病进展为HF的关键机制 [ 74 ] ,心脏纤维化和心肌肥大引起心脏形态结构和功能改变,最终导致心功能不全。流行病学调查 [ 75 ] 表明:在积极管理和治疗HF下,其病死率和住院负担仍不断增加,因此阐明HF的发病机制、探寻HF的治疗靶点是有待解决的问题。

4.3.1. 心脏纤维化

心脏纤维化是成纤维细胞和肌成纤维细胞产生的细胞外基质蛋白在心脏间质进行性沉积,最终导致心脏顺应性降低和舒张功能障碍 [ 76 ] 。成纤维细胞的活化和增殖受到纤维化介质的直接调控和其他细胞(如心肌细胞、内皮细胞、免疫细胞)的影响 [ 76 ] 。在肥胖相关糖尿病心肌病小鼠模型中,心肌细胞mtROS水平增高和线粒体损伤增加导致mtDNA泄露。mtDNA除了激活cGAS和STING外,下游NF-κB和IRF3也以磷酸化形式被激活,最终促进了炎症因子IL-18和IL-1β的表达,免疫组织化学染色显示心肌间质中结缔组织生长因子(connective tissue growth factor,CTGF)和Ⅰ型胶原α1(Type I collagen α 1,COL1A1)的纤维标记明显增加 [ 77 ] 。该研究 [ 77 ] 进一步使用STING抑制剂C176对小鼠进行腹腔注射,结果显示E/A(E峰:左室舒张早期快速充盈的充盈峰;A峰:舒张晚期充盈的充盈峰)增加、等容舒张期缩短,表明心脏舒张功能改善,这提示STING是糖尿病心肌病的潜在治疗靶点。与此类似,内质网应激对STING的激活在压力超负荷引起的心脏重塑中发挥重要作用。在体外实验 [ 30 ] 中使用血管紧张素II(angiotensin II,Ang II)对心脏成纤维细胞进行干预并同时敲低STING,可明显减少纤维化,具体表现为 α-SMA,胶原蛋白I型(collagen protein I,Col I)和胶原蛋白III型(collagen protein III,Col III)的表达下调。

STING过表达以抑制过度自噬的方式显著改善了心功能,缓解了主动脉缩窄术诱导的心脏纤维化、肥大以及炎症。自噬在心脏重塑的作用一直是具有争议的问题,但是自噬过多和不足都加速心脏重塑的发展,原因在于心脏蛋白降解和合成之间的动态平衡决定了心脏功能 [ 78 ] 。在主动脉缩窄术6周诱导的压力超负荷小鼠中,小鼠发生明显心脏纤维化和心脏肥大,同时自噬相关蛋白[Beclin-1,Atg(autophagy related protein)7,Atg12]的蛋白质水平以及LC3II/I的比例增加,但在STING上调后被抑制。在体外实验中,转化生长因子-β(transforming growth factor-β,TGF-β)诱导心脏成纤维细胞α-SMA含量的增加和胶原蛋白的合成也可被STING过表达所阻断。而使用自噬诱导剂雷帕霉素可抵消STING对小鼠心脏的保护作用。该研究 [ 79 ] 对STING抑制自噬的具体机制进一步探究发现:STING以不依赖腺苷酸活化蛋白激酶(adenosine 5’-monophosphate-activated protein kinase,AMPK)/mTOR的途径直接磷酸化自噬启动因子Atg1,从而抑制自噬并减少心脏炎症。STING的敲除和过表达两种完全相反的调控都被报道可延缓心力衰竭,这可能与心力衰竭的造模方式有关,病理刺激对心脏的损伤强度和持续时间在其中起到关键作用。

4.3.2. 心肌肥大

心肌细胞作为终末分化细胞为适应各种刺激,通过单个心肌细胞的大小增加以维持正常的心输出量,但当负荷超过心脏代偿能力时则出现病理性肥大和心功能不全 [ 80 ] ,具体表现为心肌细胞蛋白合成增加、体积增大、肌节结构排列紊乱 [ 81 ] 。高脂饮食喂养的db/db小鼠出现明显心肌肥大和左心室腔狭窄,电子显微镜显示心肌肌束紊乱甚至断裂、Z线和M线模糊 [ 77 ] 。而使用STING抑制剂治疗后,高脂饮食db/db小鼠的心肌肥大可被逆转 [ 77 ] 。与此类似,研究 [ 57 ] 发现糖尿病心肌病mtDNA泄露可触发cGAS-STING信号通路的激活,从而引起炎症反应。通过尾部静脉注射AAV9特异性敲低扩张型心肌病(dilated cardiomyopathy,DCM)小鼠心脏中的cGAS和STING,结果表明STING缺乏逆转了DCM小鼠心脏重量/体重比和心脏重量/胫骨长度比的增加、缓解了心肌细胞横截面积增加和心肌肥大标志物心房钠尿肽(atrial natriuretic peptide, ANP )、脑尿钠肽(brain natriuretic peptide, BNP )和β-重链肌球蛋白(β-myosin heavy chain, β-MHC )的mRNA水平升高。体外细胞 [ 57 ] 实验对机制进一步探究表明:脂毒性引起线粒体氧化损伤和mtDNA泄露,从而激活cGAS-STING通路,开启NLRP3炎症小体依赖性焦亡和促炎反应,从而促进糖尿病心肌病进展过程中的心肌肥大。因此,对cGAS-STING通路的干预调控可能改善糖尿病心肌病心肌肥大和心脏损伤,从而延缓心力衰竭恶化,为糖尿病心肌病的治疗策略提供了新视角。

5. cGAS-STING 通路相关抑制剂的临床应用

随着更多研究 [ 82 - 84 ] 证实cGAS-STING信号通路的激活推进了多种心血管疾病的发生与发展,多种筛选技术已研究出一些新型小分子靶向抑制该通路的药物如RU.521、G150、PF-06928215等。目前这些小分子抑制剂只应用于基础实验,临床应用前景需要进一步挖掘。但是某些已经应用于临床的药物已被发现可抑制cGAS-STING信号通路,可能发挥缓解炎症及疾病进展的重要作用。阿司匹林除在心血管疾病中预防血小板聚集的功能外,还可通过靶向促进的赖氨酸(lysine,Lys)384,Lys394和Lys414处发生乙酰化,从而有效抑制 Trex1 遗传缺失诱导的自身免疫 [ 85 ] 。此外,阿司匹林还被发现可通过抑制STING缓解COVID-19患者的血栓性凝血功能障碍 [ 86 ] 。作为糖尿病一线治疗药物的二甲双胍也被发现可通过自噬在一定程度上使cGAS-STING途径失活,从而抑制髓核细胞的衰老,缓解椎间盘变性 [ 87 ] 。cGAS和STING的靶向药物对治疗代谢性心血管疾病在临床上还未广泛应用,但是动物实验的结果可以明确cGAS-STING通路调控在代谢性心血管疾病中具有潜在的应用价值。

6. 结 语

外源性代谢因素糖脂代谢紊乱通过内源性cGAS-STING 通路调控AS、AAD、心力衰竭等代谢性心血管疾病主要不良结局的发生,并加速其恶化( 表1 )。抑制cGAS-STING信号通路可明显改善代谢性心血管疾病的发生及进展,并显著延长实验动物的生存期。因此cGAS及STING可能是防治代谢性心血管疾病的潜在靶点。然而,目前关于cGAS-STING通路参与代谢性心血管疾病的病理机制的研究仍不全面,如该通路是否参与血管周围脂肪组织对血管的调控、临床药物是否能够靶向抑制cGAS-STING通路而缓解心血管损害。因此,对于cGAS-STING信号通路在代谢因素导致心血管疾病的相关细胞或组织中的病理生理机制值得进一步的探究。

表1

cGAS-STING 信号通路与代谢性心血管疾病的相关性

Table 1 Correlation between the cGAS-STING signaling pathway and metabolic cardiovascular disease

代谢性心血管疾病 细胞 与cGAS-STING通路的联系 参考文献
动脉粥样硬化 内皮细胞 内皮-间充质转化导致血管舒缩功能障碍 [ 68 ]
血管平滑肌细胞 由收缩表型向炎症分泌表型转化并促进细胞衰老 [ 55 , 62 ]
巨噬细胞 向M1极化、促进炎症因子的释放并上调胆固醇摄取相关分子的表达 [ 37 , 65 ]
主动脉瘤与夹层 血管平滑肌细胞 促进炎症及细胞凋亡 [ 73 ]
巨噬细胞 促进基质金属蛋白酶的表达,从而引起血管弹性纤维的降解 [ 73 ]
心脏纤维化 心肌细胞 炎症因子IL-18、 IL-1β表达增加 [ 77 ]
成纤维细胞 细胞外基质胶原积累;自噬抑制并减少炎症。 [ 30 , 79 ]
心肌肥大 心肌细胞 心肌肌束紊乱甚至断裂,Z线和M线模糊;心肌细胞横截面积增加,心肌肥大标志物ANP、BNP和β-MHC表达增加 [ 57 , 77 ]

cGAS:环磷酸鸟苷-腺苷酸合成酶;STING:干扰素基因刺激因子;IL-18:白细胞介素-18;IL-1β:白细胞介素-1β;ANP:心房钠尿肽;BNP:脑钠肽;β-MHC:主要组织相容性复合体。

基金资助

国家自然科学基金(82271601,81801394)。

This work was supported by the National Natural Science Foundation of China (82271601, 81801394).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

丁慧晴 论文撰写与修改;周玉莹、印旨意 文献资料收集与分析;台适 论文选题与指导。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2023071086.pdf

参考文献

1. Ralston J, Nugent R. Toward a broader response to cardiometabolic disease [J]. Nat Med , 2019, 25 ( 11 ): 1644-1646. 10.1038/s41591-019-0642-9. [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Kim MK, Han K, Park YM, et al.. Associations of variability in blood pressure, glucose and cholesterol concentrations, and body mass index with mortality and cardiovascular outcomes in the general population [J]. Circulation , 2018, 138 ( 23 ): 2627-2637. 10.1161/CIRCULATIONAHA.118.034978. [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. 祝之明. 代谢性心血管病:理念、挑战与实践 [J]. 中华心血管病杂志 , 2021, 49 ( 7 ): 650-655. 10.3760/cma.j.cn112148-20210506-00395. [ PubMed ] [ CrossRef ] [ Google Scholar ] ZHU Zhiming. Cardiometabolic diseases: concept, challenge and clinical practice [J]. Chinese Journal of Cardiology , 2021, 49 ( 7 ): 650-655. 10.3760/cma.j.cn112148-20210506-00395. [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. 王卓, 赵孟孟, 刘海鹏. cGAS功能研究进展 [J]. 中国科学: 生命科学 , 2023, 53 ( 2 ): 262-273. 10.1360/SSV-2021-0404. [ CrossRef ] [ Google Scholar ] WANG Zhuo, ZHOU Mengmeng, LIU Haipeng. Progress in functional characterization of cGAS [J]. Scientia Sinica (Vitae) , 2023, 53 ( 2 ): 262-273. 10.1360/SSV-2021-0404. [ CrossRef ] [ Google Scholar ]
5. 向启中, 张青海, 郑昭芬. cGAS-STING信号通路在心血管疾病中的作用 [J]. 中国细胞生物学学报 , 2022, 44 ( 2 ): 332-340. 10.11844/cjcb.2022.02.0014. [ CrossRef ] [ Google Scholar ] XIANG Qizhong, ZHANG Qinghai, ZHENG Zhaofen. The impact of cGAS-STING signal pathway in cardiovascular diseases [J]. Chinese Journal of Cell Biology , 2022, 44 ( 2 ): 332-340. 10.11844/cjcb.2022.02.0014. [ CrossRef ] [ Google Scholar ]
6. Vance RE. Cytosolic DNA sensing: The field narrows [J]. Immunity , 2016, 45 ( 2 ): 227-228. 10.1016/j.immuni.2016.08.006. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Kumari P, Russo AJ, Shivcharan S, et al.. AIM2 in health and disease: Inflammasome and beyond [J]. Immunol Rev , 2020, 297 ( 1 ): 83-95. 10.1111/imr.12903. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Civril F, Deimling T, de Oliveira Mann CC, et al.. Structural mechanism of cytosolic DNA sensing by cGAS [J]. Nature , 2013, 498 ( 7454 ): 332-337. 10.1038/nature12305. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Liu H, Moura-Alves P, Pei G, et al.. cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity [J/OL]. EMBO Rep , 2019, 20 ( 4 ): e46293[2023-06-18]. 10.15252/embr.201846293. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Luecke S, Holleufer A, Christensen MH, et al.. cGAS is activated by DNA in a length-dependent manner [J]. EMBO Rep , 2017, 18 ( 10 ): 1707-1715. 10.15252/embr.201744017. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Andreeva L, Hiller B, Kostrewa D, et al.. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders [J]. Nature , 2017, 549 ( 7672 ): 394-398. 10.1038/nature23890. [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Gui X, Yang H, Li T, et al.. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway [J]. Nature , 2019, 567 ( 7747 ): 262-266. 10.1038/s41586-019-1006-9. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response [J]. Immunity , 2006, 24 ( 1 ): 93-103. 10.1016/j.immuni.2005.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Li XD, Wu J, Gao D, et al.. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects [J]. Science , 2013, 341 ( 6152 ): 1390-1394. 10.1126/science.1244040. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Volkman HE, Cambier S, Gray EE, et al.. Tight nuclear tethering of cGAS is essential for preventing autoreactivity [J/OL]. ELife , 2019, 8 : e47491[2023-06-18]. 10.7554/eLife.47491. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Li T, Huang T, Du M, et al.. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis [J]. Science , 2021, 371 ( 6535 ): eabc5386. 10.1126/science.abc5386. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Guey B, Wischnewski M, Decout A, et al.. BAF restricts cGAS on nuclear DNA to prevent innate immune activation [J]. Science , 2020, 369 ( 6505 ): 823-828. 10.1126/science.aaw6421. [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. de Oliveira Mann CC, Hopfner KP. Nuclear cGAS: guard or prisoner? [J/OL]. Embo J , 2021, 40 ( 16 ): e108293[2023-06-18]. 10.15252/embj.2021108293. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Sun H, Huang Y, Mei S, et al.. A nuclear export signal is required for cGAS to sense cytosolic DNA [J]. Cell Rep , 2021, 34 ( 1 ): 108586. 10.1016/j.celrep.2020.108586. [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Mackenzie KJ, Carroll P, Martin CA, et al.. cGAS surveillance of micronuclei links genome instability to innate immunity [J]. Nature , 2017, 548 ( 7668 ): 461-465. 10.1038/nature23449. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer [J]. J Exp Med , 2018, 215 ( 5 ): 1287-1299. 10.1084/jem.20180139. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Barnett KC, Coronas-Serna JM, Zhou W, et al.. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA [J/OL]. Cell , 2019, 176 ( 6 ): 1432-1446. e11[2023-06-18]. 10.1016/j.cell.2019.01.049. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Zhao B, Du F, Xu P, et al.. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1 [J]. Nature , 2019, 569 ( 7758 ): 718-722. 10.1038/s41586-019-1228-x. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. Liu S, Cai X, Wu J, et al.. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation [J]. Science , 2015, 347 ( 6227 ): aaa2630. 10.1126/science.aaa2630. [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. Zhang C, Shang G, Gui X, et al.. Structural basis of STING binding with and phosphorylation by TBK1 [J]. Nature , 2019, 567 ( 7748 ): 394-398. 10.1038/s41586-019-1000-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Balka KR, Louis C, Saunders TL, et al.. TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells [J]. Cell Rep , 2020, 31 ( 1 ): 107492. 10.1016/j.celrep.2020.03.056. [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Goto A, Okado K, Martins N, et al.. The kinase IKKβ regulates a STING- and NF-κB-dependent antiviral response pathway in drosophila [J/OL]. Immunity , 2018, 49 ( 2 ): 225-234. e4[2023-06-18]. 10.1016/j.immuni.2018.07.013. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. Yum S, Li M, Fang Y, et al.. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections [J/OL]. Proc Natl Acad Sci USA , 2021, 118 ( 14 ): e2100225118[2023-06-18]. 10.1073/pnas.2100225118. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. King KR, Aguirre AD, Ye YX, et al.. IRF3 and type I interferons fuel a fatal response to myocardial infarction [J]. Nat Med , 2017, 23 ( 12 ): 1481-1487. 10.1038/nm.442. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. Zhang Y, Chen W, Wang Y. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress [J]. Biomed Pharmacother , 2020, 125 : 110022. 10.1016/j.biopha.2020.110022. [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. Qiao JT, Cui C, Qing L, et al.. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease [J]. Metabolism , 2018, 81 : 13-24. 10.1016/j.metabol.2017.09.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
32. Gray EE, Treuting PM, Woodward JJ, et al.. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutières syndrome [J]. J Immunol , 2015, 195 ( 5 ): 1939-1943. 10.4049/jimmunol.1500969. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. Feng Y, Imam Aliagan A, Tombo N, et al.. RIP3 translocation into mitochondria promotes mitofilin degradation to increase inflammation and kidney injury after renal ischemia-reperfusion [J]. Cells , 2022, 11 ( 12 ): 1894. 10.3390/cells11121894. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. Ablasser A, Chen ZJ. cGAS in action: Expanding roles in immunity and inflammation [J]. Science , 2019, 363 ( 6431 ): eaat8657. 10.1126/science.aat8657. [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. Mao Y, Luo W, Zhang L, et al.. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity [J]. Arterioscler Thromb Vasc Biol , 2017, 37 ( 5 ): 920-929. 10.1161/ATVBAHA.117.309017. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
36. West AP, Khoury-Hanold W, Staron M, et al.. Mitochondrial DNA stress primes the antiviral innate immune response [J]. Nature , 2015, 520 ( 7548 ): 553-557. 10.1038/nature14156. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
37. Pham PT, Fukuda D, Nishimoto S, et al.. STING, a cytosolic DNA sensor, plays a critical role in atherogenesis: a link between innate immunity and chronic inflammation caused by lifestyle-related diseases [J]. Eur Heart J , 2021, 42 ( 42 ): 4336-4348. 10.1093/eurheartj/ehab249. [ PubMed ] [ CrossRef ] [ Google Scholar ]
38. Yu Y, Liu Y, An W, et al.. STING-mediated inflammation in Küpffer cells contributes to progression of nonalcoholic steatohepatitis [J]. J Clin Invest , 2019, 129 ( 2 ): 546-555. 10.1172/JCI121842. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
39. Du Y, Zhang H, Nie X, et al.. Link between sterile inflammation and cardiovascular diseases: Focus on cGAS-STING pathway in the pathogenesis and therapeutic prospect [J]. Front Cardiovasc Med , 2022, 9 : 965726. 10.3389/fcvm.2022.965726. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. 台适, 周琴, 郭亚男, 等. 平滑肌细胞自噬在血管疾病中作用的研究进展 [J]. 中南大学学报(医学版) , 2018, 43 ( 8 ): 920-928. 10.11817/j.issn.1672-7347.2018.08.016. [ PubMed ] [ CrossRef ] [ Google Scholar ] TAI Shi, ZHOU Qin, GUO Yanan, et al.. Recent progress in smooth muscle autophagy of vascular diseases [J]. Journal of Central South University. Medical Science , 2018, 43 ( 8 ): 920-928. 10.11817/j.issn.1672-7347.2018.08.016. [ PubMed ] [ CrossRef ] [ Google Scholar ]
41. Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, et al.. Autophagy: A key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators [J/OL]. Cells , 2022, 11 ( 15 ): e2262[2023-06-18]. 10.3390/cells11152262. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
42. Prabakaran T, Bodda C, Krapp C, et al.. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1 [J/OL]. Embo J , 2018, 37 ( 8 ): e97858[2023-06-18]. 10.15252/embj.201797858. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I interferons in cancer immunity [J]. Annu Rev Pathol , 2021, 16 : 167-198. 10.1146/annurev-pathol-031920-093932. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
44. Li C, Zhang Y, Liu J, et al.. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death [J]. Autophagy , 2021, 17 ( 4 ): 948-960. 10.1080/15548627.2020.1739447. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
45. Paludan SR, Reinert LS, Hornung V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer [J]. Nat Rev Immunol , 2019, 19 ( 3 ): 141-153. 10.1038/s41577-018-0117-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
46. Gaidt MM, Ebert TS, Chauhan D, et al.. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3 [J/OL]. Cell , 2017, 171 ( 5 ): 1110-1124. e18[2023-06-18]. 10.1016/j.cell.2017.09.039. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. 余蕙麟, 刘谦, 郭永正, 等. 棕榈酸通过cGAS-STING-IRF3通路降低心肌细胞的自噬功能 [J]. 南方医科大学学报 , 2022, 42 ( 1 ): 36-44. 10.12122/j.issn.1673-4254.2022.01.04. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] YU Huilin, LIU Qian, GUO Yongzheng, et al.. Palmitic acid suppresses autophagy in neonatal rat cardiomyocytes via the cGAS-STING-IRF3 pathway [J]. Journal of South Medical University , 2022, 42 ( 1 ): 36-44. 10.12122/j.issn.1673-4254.2022.01.04. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
48. Bielak-Zmijewska A, Mosieniak G, Sikora E. Is DNA damage indispensable for stress-induced senescence? [J]. Mech Ageing Dev , 2018, 170 : 13-21. 10.1016/j.mad.2017.08.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
49. Mikuła-Pietrasik J, Niklas A, Uruski P, et al.. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells [J]. Cell Mol Life Sci , 2020, 77 ( 2 ): 213-229. 10.1007/s00018-019-03261-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
50. He L, Chen Y, Feng J, et al.. Cellular senescence regulated by SWI/SNF complex subunits through p53/p21 and p16/pRB pathway [J]. Int J Biochem Cell Biol , 2017, 90 : 29-37. 10.1016/j.biocel.2017.07.007. [ PubMed ] [ CrossRef ] [ Google Scholar ]
51. Kang C. Senolytics and senostatics: A two-pronged approach to target cellular senescence for delaying aging and age-related diseases [J]. Mol Cells , 2019, 42 ( 12 ): 821-827. 10.14348/molcells.2019.0298. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
52. Glück S, Guey B, Gulen MF, et al.. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence [J]. Nat Cell Biol , 2017, 19 ( 9 ): 1061-1070. 10.1038/ncb3586. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
53. Yang H, Wang H, Ren J, et al.. cGAS is essential for cellular senescence [J/OL]. Proc Natl Acad Sci USA , 2017, 114 ( 23 ): E4612-E4620[2023-06-18]. 10.1073/pnas.1705499114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
54. Zhang D, Liu Y, Zhu Y, et al.. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis [J]. Nat Cell Biol , 2022, 24 ( 5 ): 766-782. 10.1038/s41556-022-00894-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]
55. Uryga AK, Grootaert MOJ, Garrido AM, et al.. Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury [J]. Commun Biol , 2021, 4 ( 1 ): 611. 10.1038/s42003-021-02123-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
56. Liu F, Liu Y, Zhuang Z, et al.. Beclin1 haploinsufficiency accentuates second-hand smoke exposure-induced myocardial remodeling and contractile dysfunction through a STING-mediated mechanism [J]. J Mol Cell Cardiol , 2020, 148 : 78-88. 10.1016/j.yjmcc.2020.08.016. [ PubMed ] [ CrossRef ] [ Google Scholar ]
57. Yan M, Li Y, Luo Q, et al.. Mitochondrial damage and activation of the cytosolic DNA sensor cGAS-STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice [J]. Cell Death Discov , 2022, 8 ( 1 ): 258. 10.1038/s41420-022-01046-w. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
58. Komarova YA, Kruse K, Mehta D, et al.. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability [J]. Circ Res , 2017, 120 ( 1 ): 179-206. 10.1161/CIRCRESAHA.116.306534. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
59. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease [J]. J Clin Invest , 2017, 127 ( 1 ): 1-4. 10.1172/JCI92035. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
60. LaCanna R, Liccardo D, Zhang P, et al.. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation [J]. J Clin Invest , 2019, 129 ( 5 ): 2107-2122. 10.1172/JCI125014. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
61. Huang LS, Hong Z, Wu W, et al.. mtDNA activates cGAS signaling and suppresses the yap-mediated endothelial cell proliferation program to promote inflammatory injury [J/OL]. Immunity , 2020, 52 ( 3 ): 475-486. e5[2023-06-18]. 10.1016/j.immuni.2020.02.002. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
62. Bi X, Du C, Wang X, et al.. Mitochondrial damage-induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability [J]. Adv Sci (Weinh) , 2021, 8 ( 5 ): 2002738. 10.1002/advs.202002738. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
63. Domizio JD, Gulen MF, Saidoune F, et al.. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19 [J]. Nature , 2022, 603 ( 7899 ): 145-151. 10.1038/s41586-022-04421-w. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
64. 金晟康, 左群. 巨噬细胞在动脉粥样硬化中的不同分型及其功能的研究进展 [J]. 生命科学 , 2022, 34 ( 6 ): 692-701. 10.13376/j.cbls/2022079. [ CrossRef ] [ Google Scholar ] JIN Shengkang, ZUO Qun. Research progress of macrophage phenotypes and their functions in arteriosclerosis [J]. Chinese Bulletin of Life Sciences , 2022, 34 ( 6 ): 692-701. 10.13376/j.cbls/2022079. [ CrossRef ] [ Google Scholar ]
65. Lu GF, Chen SC, Xia YP, et al.. Synergistic inflammatory signaling by cGAS may be involved in the development of atherosclerosis [J]. Aging , 2021, 13 ( 4 ): 5650-5673. 10.18632/aging.202491. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
66. Zhu Y, Xian X, Wang Z, et al.. Research progress on the relationship between atherosclerosis and inflammation [J]. Biomolecules , 2018, 8 ( 3 ): 80. 10.3390/biom8030080. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
67. Martinet W, Knaapen MW, De Meyer GR, et al.. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques [J]. Circulation , 2002, 106 ( 8 ): 927-932. 10.1161/01.cir.0000026393.47805. [ PubMed ] [ CrossRef ] [ Google Scholar ]
68. Liu Q, Cheng Z, Huang B, et al.. Palmitic acid promotes endothelial-to-mesenchymal transition via activation of the cytosolic DNA-sensing cGAS-STING pathway [J]. Arch Biochem Biophys , 2022, 727 : 109321. 10.1016/j.abb.2022.109321. [ PubMed ] [ CrossRef ] [ Google Scholar ]
69. Thuan DTB, Zayed H, Eid AH, et al.. A Potential link between oxidative stress and endothelial-to-mesenchymal transition in systemic sclerosis [J]. Front Immunol , 2018, 9 : 1985. 10.3389/fimmu.2018.01985. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
70. Evrard SM, Lecce L, Michelis KC, et al.. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability [J]. Nat Commun , 2016, 7 : 11853. 10.1038/ncomms11853. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
71. Lu H, Du W, Ren L, et al.. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms [J/OL]. J Am Heart Assoc , 2021, 10 ( 24 ): e023601[2023-06-18]. 10.1161/JAHA.121.023601. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
72. Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments [J]. Nat Rev Cardiol , 2019, 16 ( 4 ): 225-242. 10.1038/s41569-018-0114-9. [ PubMed ] [ CrossRef ] [ Google Scholar ]
73. Luo W, Wang Y, Zhang L, et al.. Critical role of cytosolic dna and its sensing adaptor sting in aortic degeneration, dissection, and rupture [J]. Circulation , 2020, 141 ( 1 ): 42-66. 10.1161/CIRCULATIONAHA.119.041460. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
74. de Couto G, Ouzounian M, Liu PP. Early detection of myocardial dysfunction and heart failure [J]. Nat Rev Cardiol , 2010, 7 ( 6 ): 334-344. 10.1038/nrcardio.2010.51. [ PubMed ] [ CrossRef ] [ Google Scholar ]
75. Roger VL. Epidemiology of heart failure: A contemporary perspective [J]. Circ Res , 2021, 128 ( 10 ): 1421-1434. 10.1161/CIRCRESAHA.121.318172. [ PubMed ] [ CrossRef ] [ Google Scholar ]
76. Frangogiannis NG. Cardiac fibrosis [J]. Cardiovasc Res , 2021, 117 ( 6 ): 1450-1488. 10.1093/cvr/cvaa324. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
77. Ma XM, Geng K, Law BY, et al.. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes [J]. Cell Biol Toxicol , 2023, 39 ( 1 ): 277-299. 10.1007/s10565-021-09692-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
78. Nishida K, Otsu K. Autophagy during cardiac remodeling [J]. J Mol Cell Cardiol , 2016, 95 : 11-18. 10.1016/j.yjmcc.2015.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
79. Xiong R, Li N, Chen L, et al.. STING protects against cardiac dysfunction and remodelling by blocking autophagy [J]. Cell Commun Signal , 2021, 19 ( 1 ): 109. 10.1186/s12964-021-00793-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
80. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy [J]. Nat Rev Cardiol , 2018, 15 ( 7 ): 387-407. 10.1038/s41569-018-0007-y. [ PubMed ] [ CrossRef ] [ Google Scholar ]
81. Lyon RC, Zanella F, Omens JH, et al.. Mechanotransduction in cardiac hypertrophy and failure [J]. Circ Res , 2015, 116 ( 8 ): 1462-1476. 10.1161/CIRCRESAHA.116.304937. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
82. Vincent J, Adura C, Gao P, et al.. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice [J]. Nat Commun , 2017, 8 ( 1 ): 750. 10.1038/s41467-017-00833-9. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
83. Lama L, Adura C, Xie W, et al.. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression [J]. Nat Commun , 2019, 10 ( 1 ): 2261. 10.1038/s41467-019-08620-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
84. Hall J, Brault A, Vincent F, et al.. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay [J/OL]. PLoS One , 2017, 12 ( 9 ): e0184843[2023-06-18]. 10.1371/journal.pone.0184843. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
85. Dai J, Huang YJ, He X, et al.. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity [J/OL]. Cell , 2019, 176 ( 6 ): 1447-1460. e14[2023-06-18]. 10.1016/j.cell.2019.01.016. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
86. Berthelot JM, Drouet L, Lioté F. Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway? [J]. Emerg Microbes Infect , 2020, 9 ( 1 ): 1514-1522. 10.1080/22221751.2020.1785336. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
87. Ren C, Jin J, Li C, et al.. Metformin inactivates the cGAS-STING pathway through autophagy and suppresses senescence in nucleus pulposus cells [J]. J Cell Sci , 2022, 135 ( 15 ): jcs259738. 10.1242/jcs.259738. [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University