Abstract:

Based on nonparametric Bayesian estimation of a conditional distribution, posterior estimation of an unknown regression function is obtained by calculating its expectation. The mean square error of the estimation is calculated. Its convergence in mean square of the estimation is proved. It is shown that the mean square error of the estimation is less than that of the local linear kernel regression when prior regression is chosen to be close to the unknown regression function. Empirical evidence shows that the nonparametric Bayesian regression may be more effective in prediction than local linear regression.

Key words: nonparametric Bayesian regression, nonparametric Bayesian distribution estimation, Dirichlet process, local linear regression, population prediction

© 2019 上海大学学报(自然科学版)编辑部
办公地址:上海市宝山区南陈路333号上海大学东区3#楼221室电话:021-66135508  传真:021-66132736  E-mail: xuebao@mail.shu.edu.cn
通信地址:上海市上大路99号上海大学126信箱 邮编:200444
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn