束靶作用驱动的新型等离子体极化器及其产生的自旋极化电子源
束靶作用驱动的新型等离子体极化器及其产生的自旋极化电子源导读近日,浙江大学聚变理论与模拟中心朱兴龙研究员与上海交通大学盛政明教授联合团队在自旋极化电子源研究方面取得了重要进展,发现了电子束与固体靶相互作用可以驱动一种新型等离子体的电子极化机制,并由此产生具有高极化度的稠密电子束,为高能极化电子源的发展及其应用提供了新途径。该研究成果以Letter形式发表在Physical Review Research上。研究背景自旋极化电子源在基础研究与实际应用中发挥着至关重要的作用,例如寻找超标准模型的新物理、探测核子结构、研究拓扑材料等。此外,极化电子束还可以作为种子源来产生极化光子束和极化正电子束,用于探索宇宙中物质与反物质的不对称性等一些基本物理问题。目前,高能极化电子源主要通过辐射自旋极化效应在存储环中产生;或者直接从光阴极中提取低能极化电子,然后利用加速器将其加速至高能量。这些方法通常依赖于大型加速器,并且束流强度有限。近期,有研究人员提出利用超强激光与电子束对撞来产生极化电子的方案。然而,由于激光场的时空振荡特性,很难获得高极化度的稠密电子束。此外,该方法需要精准的光束对准与时空同步,以及特殊场结构的十拍瓦(10PW)级高功率高强度激光脉冲,实验实施具有很大难度。因此,亟需发展一种高效、简洁的新方法来极化电子束。研究创新点在该工作中,研究团队发现利用一束普通的高能电子束以掠入射方式与固体靶相互作用,可以触发等离子体对入射电子束的极化过程。研究表明,当电子束以掠入射角驱动固体靶表面时,将引起超强等离子体背景电子回流,从而在靶表面激发出非对称的超强准静态表面磁场。在前期研究工作中,研究团队发现该表面磁场可以引起驱动电子束发生强烈的自聚焦,因此这种作用结构可以充当电子束的聚焦透镜,并可以高效率地产生高亮度伽马射线[Zhu et al., Optica 10, 118 (2023)]。经过进一步的深入研究发现,由于该表面磁场在靶内外的不对称性,电子束流在穿越该非对称强磁场时可以触发强辐射自旋极化效应,从而能被有效地极化,如图1所示。利用自旋分辨的粒子模拟程序,作者证明了束靶直接相互作用所引起的电子自旋极化过程,并阐明了束流自聚焦和磁场诱导电子极化之间的协同作用机理。图1. 普通的高能电子束以掠入射方式与固体靶相互作用和产生高极化度稠密电子源的示意图。总结与展望该工作报道了一种基于束-等离子体作用的新型极化器,可以有效产生具有高自旋极化度的稠密电子束。研究表明,通过一束普通的高能电子束以掠入射方式与固体靶相互作用,其在靶表面激发的准静态强磁场在靶内外具有不对称性,这对电子束进行聚焦的同时将激发辐射自旋极化过程,由此产生具有高极化度的稠密电子束。该方案的实验实施比较简单,无需使用额外的超强激光场,为高能自旋极化电子源的发展及其应用提供了新途径。浙江大学物理学院朱兴龙研究员为该论文的第一作者兼通讯作者,上海交通大学盛政明教授为共同通讯作者,合作者包括上海交大陈民教授和中国人民大学王伟民教授。该工作得到了国家自然科学基金等项目的资助。阅读原文:Xing-Long Zhu, Min Chen, Wei-Min Wang, and Zheng-Ming Sheng, “Generation of relativistic polarized electron beams via collective beam-target interactions”, Phys. Rev. Research 6, L042069 (2024).论文链接:https://doi.org/10.1103/PhysRevResearch.6.L042069欢迎感兴趣的同学前来交流或加入朱老师课题组开展相关研究,详情见:https://person.zju.edu.cn/xlzhu
An adaptive moving mesh finite difference scheme for tokamak magneto-hydrodynamic simulations
An adaptive moving mesh finite difference scheme for tokamak  magneto-hydrodynamic simulations  J. Wang a , J.M. Duan b , Z.W. Ma a,* , W. Zhang a  a:Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, Chinab:Ecole ´ Polytechnique F´ed´erale de Lausanne, 1015 Lausanne, SwitzerlandAn adaptive moving mesh finite difference scheme is developed for tokamak magneto-hydrodynamic (MHD)  simulations, based on the CLT code (S. Wang and Z.W. Ma, Phys. Plasmas, 2015). Our numerical scheme is built  on the MHD equations in curvilinear coordinates, based on a coordinate transformation from the physical domain to a computational domain. The scheme is constructed on a uniform Cartesian computational mesh that  is obtained from a non-uniform adaptive moving mesh in the physical domain through the coordinate transformation. Mesh points in the physical domain in general move and concentrate in the vicinity of solutions with  rapid variations by solving an adaptive mesh equation, whilst total number of mesh points remains unchanged.  The local resolution can be significantly increased and computational resource is largely reduced. Comparison  between results obtained with the original uniform mesh and the new adaptive moving mesh is carried out by  simulation of the linear and nonlinear 2/1 tearing mode, linear and nonlinear 1/1 resistive internal kink mode. It  is found that the adaptive moving mesh scheme possesses better numerical stability and convergence.
Development of a gyrokinetic-MHD energetic particle simulation code. II. Linear simulations of Alfven eigenmodes driven by energetic particles
Development of a gyrokinetic-MHD energetic particle simulation code. II. Linear simulations of Alfvén eigenmodes driven by energetic particles Z. Y. Liu ; P. Y. Jiang ; S. Y. Liu ; L. L. Zhang ; G. Y. Fu ABSTRACT We have developed a hybrid code GMEC: Gyro-kinetic Magnetohydrodynamics (MHD) Energetic-particle Code that can numerically simulate energetic particle-driven Alfvén eigenmodes and energetic particle transport in tokamak plasmas. In order to resolve the Alfvén eigenmodes with high toroidal numbers effectively, the field-aligned coordinates and meshes are adopted. The extended MHD equations are solved with the five-point finite difference method and the fourth-order Runge–Kutta method. The gyrokinetic equations are solved by particle-in-cell method for the perturbed energetic particle pressures that are coupled into the MHD equations. Up to now, a simplified version of the hybrid code has been completed with several successful verifications, including linear simulations of toroidal Alfvén eigenmodes and reversed shear Alfvén eigenmodes.