The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 Feb 25; 49(1): 90–99.
PMCID: PMC8800678

Language: Chinese | English

神经元树突形态建成分子机制的研究进展

Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis

Weixia ZHAO

1 浙江大学转化医学研究院, 浙江 杭州 310058

Find articles by Weixia ZHAO

Wei ZOU

1 浙江大学转化医学研究院, 浙江 杭州 310058 2 浙江大学医学院附属第四医院, 浙江 义乌 322000 1 浙江大学转化医学研究院, 浙江 杭州 310058 2 浙江大学医学院附属第四医院, 浙江 义乌 322000 nc.ude.ujz@oahzaixiew https://orcid.org/0000-0003-0980-3304 第一作者:赵维霞(1995-), 女, 硕士研究生, 主要从事神经元树突发育研究; E-mail:;

通信作者:通讯作者, email: nc.ude.ujz@iewuoz Caenorhabditis elegans , Drosophila and mice. These studies will provide a better understanding on how defective dendrite development and maintenance are associated with neurological diseases.

Keywords: Dendrites/development, Neurons, Molecular biology, Review

神经系统由不同类型的神经元构成,每种神经元有其复杂的特定形态结构,通常包括树突和轴突。神经元是一类高度极化的细胞,通过树突分支收集自上游神经元或环境中的信息,而轴突则通过突触将集成信息以电信号或化学信号传递给下游神经元或非神经细胞(如肌肉细胞),这是生物体内至关重要的信息传递过程。在神经发育过程中,神经前体细胞受内、外在因子调控分化成特定形态的神经元,从而发挥特定功能。树突形态的建成受到精确调控,分支形态改变、病变性断裂、分支缩回或丧失等树突形态的变化,以及树突棘形态和数量的变化都可能与神经发育障碍高度相关 。目前已鉴定出多种神经系统疾病的潜在致病基因,它们可能引起各种神经系统疾病中树突复杂性和分支形态的改变。理解树突形态建成的分子机制对理解正常和疾病情况下的神经系统功能有着重要的作用。学者通过病理研究发现,孤独症谱系障碍个体海马CA1和CA4区树突分支减少 ,且树突棘密度变大 ,后续研究揭示了间质-上皮转化( MET )基因及其配体肝细胞生长因子可调节大脑皮层树突形态发育及促进神经突起向外生长 。甲基化CpG结合蛋白2( MeCP2 )基因编码人类甲基DNA结合因子, MeCP2 突变小鼠可表现出典型的雷特综合征树突形态异常 。内源性敲除 MeCP2 基因可导致海马椎体神经元树突棘密度降低 ,而在小鼠神经元培养物中过表达 MeCP2β 可导致神经元产生更复杂的树突形态和更长的轴突,表明其参与调节神经元形态建成

新生神经元通过极化的细胞骨架和细胞器区分轴突和树突,一旦由突起特化产生的分支被指定为轴突,细胞将启动轴突发育机制——微管极化后的定向物质运输和细胞器精确定位。一般而言,轴突中的微管方向一致,均为正端指向轴突末端;而树突则呈现相反或混合极性的微管,有助于树突高级分支发育 。另外,细胞器的精确分布也依赖于微管的极性分布,核糖体、分泌型内质网和高尔基体等细胞器均沿负端微管运输,因此这类细胞器只存在于神经元细胞体和树突中,有助于树突分支的形成和分化 。而轴突中无蛋白质合成,因此神经递质和膜蛋白等须在细胞体中合成,再转运到轴突发挥功能。

不同类型神经元的树突大小存在显著差异,这决定了它们所能覆盖目标区域的面积。那么,它们能覆盖的面积如何被决定,树突的密集程度又如何被调控?此外,树突如何在特定位置产生和生长,并在成熟过程中形成用于接收信息的突触?树突发育的不同阶段都依赖于细胞内特异调节因素(内在因子)和外在环境因素(外在因子)的协调作用,本研究总结了不同模式系统中调控树突形态建成的细胞和分子生物学机制,有助于理解多种神经发育疾病中树突异常的分子机制。

1 神经元树突的形态发育

在视网膜神经节神经元、前脑锥体神经元和小脑颗粒神经元等众多神经元中,其树突的产生和成熟迟于轴突发育 。与轴突不同,树突往往形成高度分支形态。尽管不同神经元具有细胞类型特异的树突形态,但树突发育遵循一些共同规律:①神经元在发育初期接收信号,从胞体向目标区域延伸出一些突起,这些突起中存在与轴突不同的蛋白分子特征 ,突起逐步延伸,形成高度分支的树突结构 ;②来自同一神经元的姐妹树突通常相互排斥而在空间上互不重叠,该现象被称为树突的自我回避(dendritic self-avoidance),已在黑腹果蝇 、秀丽隐杆线虫 等多种模式动物中证实;③功能相同的不同神经元树突分支覆盖不同的区域而互不重叠,这一现象被称为树突平铺(dendritic tilling),能避免相同功能神经元重复接收信号输入 ;④多种神经元树突发育成熟过程中会逐步形成被称为树突棘(dendritic spine)的突起结构,其在发育成熟后形成用于接收信号的突触后膜,接收上游的电信号或化学信号,并将其转化为该神经元上的电信号,传递给轴突结构;⑤树突发育成熟中还需要修剪,包括树突分支连接的细化和分支的修饰,通过撤回和消除来去除多余的树突分支,如小鼠小脑中的神经元被修剪以消除过多的树突分支,剩余的树突分支经历突触后分化和成熟的过程,进而为突触形成做准备

2 神经元树突的形态与其功能的相关性

神经元树突的形态决定分布其上的突触接收的信息及整合信息的方式,并由此决定整个神经元的功能。树突的大小决定了信号接收区的范围。当树突分布的面积越大,其突触后膜分布越广,接收并且需要整合处理的信息量也越大,对于单个细胞而言,蛋白运输也存在巨大的挑战。在果蝇的树突分支神经元、线虫感受神经元中的PVD和FLP神经元和小鼠视网膜神经节细胞和无长突细胞中,一些传入性神经因子(如神经营养因子和神经递质)能够决定树突分支向目标区域生长,另外树突之间的相互作用(如树突自我回避)也能限定树突分布的区域。

大脑是人体最重要的中枢神经系统,根据1909年Brodmann分区可以将大脑皮层区分为52个区域,这些区域能够有效地处理特定感觉或运动信息,因此不同区域的不同神经元需要针对性地生长出树突,形成成熟的突触结构并保持特异性。在脊椎动物视网膜、小脑、海马和皮质等大脑区域中,其突触在神经环路上呈片层分布来促进信息处理 。多种类型的神经元树突发育被精确调控,以在特定层中形成正确的突触连接。如脊椎动物的视觉和嗅觉系统中,神经元将树突延伸到视网膜的层状神经区域或嗅球特定位置 。精确靶向的树突生长有助于将上游突触前膜和下游树突的突触后膜置于同一层以确保神经连接的特异性,因此神经环路的分层组装对于神经系统发育及其功能至关重要。

除了用于处理单一信号的神经元外,有些神经元还需要接收多种信号并且保证正确有效地输出,因此这些神经元需要形成用于接收不同突触输入的分区树突分支,如海马CA1椎体神经元树突在功能和形态分布上形成了良好的分区,可以分为海马起层、椎体细胞层、辐射层和腔隙分子层 。CA1椎体神经元的胞体位于海马起层,位于腔隙分子层的远端树突分支接收来自内嗅皮层的兴奋性信号输入,而位于近端辐射层的树突分支则用于接收来自海马CA3轴突的信号输入 。因此,树突的正确发育和精确定位对于神经元的信息接收和传递至关重要。

3 调控神经元树突发育的内在因子

在相同的环境中,不同类型的神经元能发育成不同的形态并发挥不同的功能,这取决于神经元发育过程中细胞内在因子的调控,主要包括细胞特异性转录因子、肌动蛋白聚合与解聚调控因子、参与分泌和内吞途径的相关因子等( 表 1 )。 表1 神经元树突建成的内在调控蛋白 Table 1 Intrinsic regulators of neuronal dendrite morphogenesis

内在调控蛋白

细胞特异性转录因子

AHR-1

决定神经元细胞命运

UNC-86

决定细胞命运和树突分支形成

MEC-3

多树突神经元树突分支产生

Abrupt

决定树突形态的复杂程度

调控椎体神经元树突形态发育

肌动蛋白聚合与解聚调控因子

TIAM-1

调控肌动蛋白组装,促进树突分支形成

RhoA、Rac1、Cdc42

调节肌动蛋白细胞骨架动态,从而调控树突分支形成

参与分泌、内吞途径的相关蛋白

RAB-10、EXOC-8、SEC-8

调控跨膜受体蛋白的运输,促进树突生长和分支

果蝇的树突分支神经元是树突形态研究的经典模型,根据分支复杂程度被分为四类,Ⅰ类和Ⅱ类神经元分支相对简单,Ⅲ类和Ⅳ类神经元分支更为复杂。在树突分支神经元中,特定的转录因子决定了它们分化成不同形态的神经元,如 abrupt 是仅在Ⅰ类神经元中特异性表达的转录因子,可以通过限制树突分支生长决定神经发育成Ⅰ类神经树突分支,其错误表达会导致分支形态发生异常 。在线虫中,特定的转录因子表达水平变化会引起神经细胞的形态甚至细胞命运的改变。如 ahr-1 功能缺失会导致轻触觉感受神经元AVM(无分支)发育为形态类似于PVD的烛台状分支,且功能转变为重触觉感受神经元 。此外,发育过程中转录因子的程序化执行也会影响PVD神经元树突形态发育。如线虫PVD神经元的形态发育需要POU结构域转录因子UNC-86和LIM同源结构域蛋白MEC-3在时空上的调控,UNC-86主要决定PVD的形态发育,MEC-3则促进产生更复杂的高级树突分支结构 。在脊椎动物中,Neurogenin 2(Ngn2)是碱性螺旋-环-螺旋(bHLH)家族成员,它通过在径向迁移起始阶段促进极化前导分支的产生,进而控制新的皮质锥体神经元中的顶端树突形态 。Ngn2突变可产生多极树突形态,而无顶端树突。另外,Ngn2还是浦肯野细胞(Purkinje cell)树突发生的关键调节因子 ,在控制哺乳动物早期树突分支形态发生中起重要作用。

神经元树突的正确发育需要细胞骨架成分的协调作用,包括肌动蛋白和微管蛋白。RhoA、Rac1和Cdc42等小GTP酶可调节细胞骨架的生长动态,从而控制哺乳动物神经元树突生长、分支和树突棘形成 。其中Rac1与树突特化和成熟有关。海马锥体神经元中,表达缺乏GTP酶活性的Rac1可导致树突减少和树突棘丢失,这反映了Rac1在树突发育和长期树突棘稳定性方面的功能 。神经元树突形态的生长和维持还受微管蛋白和微管相关蛋白(microtubule-associated proteins,MAP)调控,如MAP1A和MAP2等。在小脑神经元中,MAP2通过选择性地稳定微管蛋白密度来维持树突形态 。在线虫PVD神经元中,微管主要定位在轴突和一级树突中,当微管蛋白组装和极性发生改变时,PVD形态建成可出现缺陷 。肌动蛋白在树突发育和维持上也发挥着重要作用,在皮质和海马锥体神经元的树突棘中,最重要的调节因子是Arp2/3复合物,它能与现有肌动蛋白丝侧面结合以促进分支生成 。另外,近期有研究表明,在线虫PVD神经元中高级树突分支依赖纤丝状肌动蛋白(F肌动蛋白)的组装,这种组装基于树突受体DMA-1和HPO-30的相互作用,并依赖于下游细胞内TIAM-1/RacGEF和威斯科特-奥尔德里奇综合征蛋白家族verprolin同源蛋白调节复合物(WAVE regulation complex,WRC)的共同作用

此外,参与分泌和内吞途径的相关因子在树突发育中也发挥重要作用。以线虫PVD神经元为例,树突的生长和分支依赖于内质网到高尔基体的分泌途径,在 rab-10 exoc-8 sec-8 基因缺失突变体中,分泌囊泡和循环囊泡大量累积,导致需定位在树突表面的受体DMA-1等滞留在囊泡中而无法定位于近端树突细胞膜,因此表现出近端树突分支显著减少的缺陷表型

4 调控神经元树突发育的外在因子

神经元树突发育需要接收外界信号来指导树突在正确的位置产生分支并被精确导向。树突发育的外在调控因子可根据其作用方式分为分泌型和接触依赖型调控因子( 表 2 )。 表2 神经元树突建成的外在调控蛋白 Table 2 External regulators of neuronal dendrite morphogenesis

外在调控蛋白

UNC-6

促进神经元树突分支产生,调控树突分支自我回避

白细胞衍生趋化因子2

调控树突导向与分支形成

NGF、BDNF、NT-3、NT-4

调控大脑皮质和海马神经元树突形态发育

Wnt3a

负调控树突复杂性

Wnt5a

促进树突分支形成

调控树突形态发育

接触依赖型

SAX-7

调控多树突神经元树突分支生长与导向

SAX-3

与SAX-7/L1细胞黏附分子共同调控神经元树突导向

MIG-14

调控树突分支自我回避

唐氏综合征细胞黏附分子

可变剪接亚型调控树突自我回避

原钙黏蛋白

可变剪接亚型调控树突自我回避

Sdk1、Sdk2、接触蛋白

限定单个视网膜神经节细胞树突分布特定的一个或几个精确分层

整联蛋白(果蝇)

调控树突分支三维空间分布

整联蛋白(哺乳动物)

通过非受体酪氨酸激酶通路促进树突发育和分支形成

DMA-1

作为树突受体蛋白调控树突生长与分支形成

HPO-30

作为共受体蛋白调控树突生长与分支形成

分泌型调控因子主要是树突生长微环境中分泌的一些调控因子,如神经营养因子Netrin、信号糖蛋白Wnts(Wingless)、神经迁移蛋白Slit等。UNC-6/Netrin与细胞外基质相互作用,通过受体蛋白UNC-40/结肠癌缺失基因(deleted in colorectal cancer,DCC)共同促进线虫PVD神经元二级分支的产生 。同时,UNC-6/Netrin信号及其受体UNC-5在UNC-34/Ena/VASP上游发挥驱动树突自我回避的功能 ,该功能还需要UNC-6来调控肌动蛋白组装 。哺乳动物中有一类神经营养蛋白相关家族,包括神经生长因子、脑源性生长因子、神经营养因子3和神经营养因子4。在大脑皮质细胞和海马体中,神经营养因子与神经元树突上的Trk受体结合,促进不同脑区神经元树突的形态发育 。在皮质锥体神经元中,当受体TrkB发生缺陷时,脑源性生长因子无法与受体结合,从而导致树突撤回或神经元丢失 。此外,脑源性生长因子通过促进树突中的TrkB定位来调节Rab-11介导的再循环,从而诱导海马神经元树突分支的形成

Wnt蛋白是一种分泌型糖蛋白,其受体是Frizzled家族蛋白及低密度脂蛋白受体相关蛋白,通过下游的支架蛋白Disheveled(Dvl)激活下游通路。Wnt3a和Wnt5a调控大脑嗅球中间神经元的树突分支发育 。其中Wnt5a诱导树突分支产生,而Wnt3a抑制树突复杂性。此外,最近有研究表明,线虫中MIG-14/Wntless可与UNC-40/DCC共同促进肌动蛋白聚合,介导PVD树突分支的自我回避 。由此可见,Wnt蛋白在不同神经发育系统的树突发育过程中起重要作用。

Slit及其受体Robo的相互作用可调节轴突导向和树突形态发育 。在果蝇神经系统中,Slit-Robo介导树突生长锥从中线穿越后的排斥作用,防止新生的树突分支多次穿越中线 。Slit和Robo通常作为配体和受体相互识别,调控分支导向。有趣的是,最新研究显示 sax-3/Robo 缺失可导致PVD神经元一级树突无法沿着ALA神经元的轴突生长,而这个过程不依赖于 slt-1/Slit 。指导PVD导向生长的配体是ALA神经元中的SAX-7/L1细胞黏附分子(L1CAM),它与PVD神经元中SAX-3/Robo受体的相互作用可以调节生长锥中的肌动蛋白组装,从而精确调控了PVD树突导向

接触依赖型调控因子顾名思义是依赖于与神经元直接接触的周围细胞和组织,通常通过受体-配体相互作用,将信号传达到靶细胞,调控树突正确定位并维持神经元的靶特异性。这类配体和受体蛋白被统称为细胞黏附分子,包括免疫球蛋白超家族(immunoglobulins superfamily,IgSF)、钙黏着蛋白和整联蛋白、富含亮氨酸重复基序的跨膜蛋白等。IgSF主要包括Sidekick(Sdk1)、Sdk2、唐氏综合征细胞黏附分子(DSCAM)和接触蛋白等。视网膜神经节细胞的树突分布于内丛状层,接收其他神经元的信息输入,其胞体存在于狭窄的神经节细胞层中,其最显著的特征是单个视网膜神经节细胞的树突被限定在特定内丛状层内的一个或几个精确分层中 ,而上述IgSF均高度表达于特定的内丛状层中并介导嗜同性相互作用。敲除其中一种仅导致表达该蛋白的视网膜神经节细胞层特异结构破坏,其余结构并不影响 。在小鼠视网膜神经节细胞中,DSCAM调节神经树突分支,调控树突自我回避 。在果蝇中,DSCAM可通过不同剪接模式产生不同亚型,同种神经元树突中只特异表达一种亚型,因此含有同型DSCAM的树突分支产生接触依赖的同型排斥作用 。哺乳动物中原钙黏蛋白具有多种剪接亚型,可调控树突自我回避

整联蛋白是一种跨膜胞外基质受体,是一种异亲型细胞黏附分子,介导细胞与相邻物质的黏附和识别作用。小鼠研究发现,整联蛋白通过精氨酸非受体酪氨酸激酶通路促进树突发育和复杂分支产生 。在果蝇中,表皮的整联蛋白减少将导致树突脱离细胞外基质,更多地被皮肤包裹,不再局限于二维平面生长 。以上结果表明,神经元表达的整联蛋白通过与细胞外基质相互作用而调控神经元树突发育。

多种细胞黏附分子可形成配体-受体配对而精确调控树突导向和分支形成。以线虫为例,PVD神经元一级树突的导向生长依赖于ALA神经元表达的SAX-7/L1CAM配体和PVD神经元上的SAX-3/Robo受体 。PVD神经元高级树突分支形成和导向依赖于皮肤上条块状定位的SAX-7、MNR-1配体复合物和树突跨膜受体DMA-1 。最近研究发现,这一过程还需要肌肉细胞分泌的白细胞衍生趋化因子2蛋白作为分泌型配体来增强上述配体-受体复合物结合的亲和力 。类密封蛋白HPO-30与DMA-1结合,分别募集或激活WRC和TIAM-1来促进细胞内的肌动蛋白组装和树突分支形成 。这种精密的组合型调控确保了树突发育时间和空间上的特异性。

5 结语

细胞类型特异的树突形态建成对于神经环路构建的精确性至关重要,在树突发育机制研究中已经确定了一系列内在和外在因子介导的信号通路,它们共同调控了树突发育的不同方面。不同模式的动物研究中能发现不同的信号分子和信号通路,但这些蛋白分子往往具有同源性。因此我们可以归纳出一些在树突形态发育上的一般性原则,如细胞骨架调节因子促进树突分支形成,细胞外因子调控树突形态发育的空间特异性。这有助于我们理解在生命体中其他类型的神经元如何实现其树突形态建成,以及树突形态与其功能的对应关系。当然,由于其生长环境各异,不同的神经元发育机制也有其特异性。同一类调控因子可能在不同发育阶段发挥不同的功能,如大鼠的小脑皮质颗粒神经元中钙内流早期可促进树突生长,而在后期发育阶段则促进树突修剪

目前树突发育研究已经取得很大的进展,但还有很多科学问题有待进一步探索,如还有哪些神经元生长微环境产生的胞外信号调控树突发育?不同的细胞外信号分子如何相互作用从而共同调控神经元发育?这些分子的表达和定位如何被时空特异性地精确调控,以促进精确的树突发育?

树突发育和维持的异常与多种神经系统疾病相关,已有研究表明自闭症和阿尔茨海默病中异常的树突分支形态可能与认知功能障碍密切相关 。因此,神经元树突发育的分子机制研究有助于理解人类相关疾病的发生。未来的研究将鉴定出更多与树突发育相关的调控因子,进一步揭示神经环路功能异常疾病中树突发育和维持的缺陷,并帮助开发新的治疗手段以功能性地修复或重建神经环路。

Funding Statement

国家自然科学基金(31800861)

References

1. BARÓN-MENDOZA I, DEL MORAL-SÁNCHEZ I, MARTÍNEZ-MARCIAL M, et al. Dendritic complexity in prefrontal cortex and hippocampus of the autistic-like mice C58/J. Neurosci Lett. 2019; 703 :149–155. doi: 10.1016/j.neulet.2019.03.018.
[BARÓN-MENDOZA I, DEL MORAL-SÁNCHEZ I, MARTÍNEZ-MARCIAL M, et al. Dendritic complexity in prefrontal cortex and hippocampus of the autistic-like mice C58/J[J]. Neurosci Lett, 2019, 703:149-155. DOI:10.1016/j.neulet.2019.03.018.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. MARTÍNEZ-CERDEÑO V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev Neurobiol. 2017; 77 (4):393–404. doi: 10.1002/dneu.22417.
[MARTÍNEZ-CERDEÑO V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models[J]. Dev Neurobiol, 2017, 77(4):393-404. DOI:10.1002/dneu.22417.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. LAUTERBORN J C, COX C D, CHAN S W, et al. Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease. Brain Pathol. 2020; 30 (2):319–331. doi: 10.1111/bpa.12779.
[LAUTERBORN J C, COX C D, CHAN S W, et al. Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease[J]. Brain Pathol, 2020, 30(2):319-331. DOI:10.1111/bpa.12779.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. BAJ G, PATRIZIO A, MONTALBANO A, et al. Developmental and maintenance defects in Rett syndrome neurons identified by a new mouse staging system in vitro . Front Cell Neurosci. 2014; 8 :18. doi: 10.3389/fncel.2014.00018.
[BAJ G, PATRIZIO A, MONTALBANO A, et al. Developmental and maintenance defects in Rett syndrome neurons identified by a new mouse staging system in vitro [J]. Front Cell Neurosci, 2014, 8:18. DOI:10.3389/fncel.2014.00018. ] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. MOYER C E, SHELTON M A, SWEET R A. Dendritic spine alterations in schizophrenia. Neurosci Lett. 2015; 601 :46–53. doi: 10.1016/j.neulet.2014.11.042.
[MOYER C E, SHELTON M A, SWEET R A. Dendritic spine alterations in schizophrenia[J]. Neurosci Lett, 2015, 601:46-53. DOI:10.1016/j.neulet.2014.11.042.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. MACDONALD M L, ALHASSAN J, NEWMAN J T, et al. Selective loss of smaller spines in Schizophrenia. Am J Psychiatry. 2017; 174 (6):586–594. doi: 10.1176/appi.ajp.2017.16070814.
[MACDONALD M L, ALHASSAN J, NEWMAN J T, et al. Selective loss of smaller spines in Schizophrenia[J]. Am J Psychiatry, 2017, 174(6):586-594. DOI:10.1176/appi.ajp.2017.16070814.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. RAYMOND G V, BAUMAN M L, KEMPER T L. Hippocampus in autism:a Golgi analysis. Acta Neuropathol. 1996; 91 (1):117–119. doi: 10.1007/s004010050401.
[RAYMOND G V, BAUMAN M L, KEMPER T L. Hippocampus in autism:a Golgi analysis[J]. Acta Neuropathol, 1996, 91(1):117-119. DOI:10.1007/s004010050401.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. HUTSLER J J, ZHANG H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010; 1309 :83–94. doi: 10.1016/j.brainres.2009.09.120.
[HUTSLER J J, ZHANG H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders[J]. Brain Res, 2010, 1309:83-94. DOI:10.1016/j.brainres.2009.09.120.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. GUTIERREZ H, DOLCET X, TOLCOS M, et al. HGF regulates the development of cortical pyramidal dendrites. Development. 2004; 131 (15):3717–3726. doi: 10.1242/dev.01209.
[GUTIERREZ H, DOLCET X, TOLCOS M, et al. HGF regulates the development of cortical pyramidal dendrites[J]. Development, 2004, 131(15):3717-3726. DOI:10.1242/dev.01209.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. FUKUDA T, ITOH M, ICHIKAWA T, et al. Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. J Neuropathol Exp Neurol. 2005; 64 (6):537–544. doi: 10.1093/jnen/64.6.537.
[FUKUDA T, ITOH M, ICHIKAWA T, et al. Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice[J]. J Neuropathol Exp Neurol, 2005, 64(6):537-544. DOI:10.1093/jnen/64.6.537.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. CHAPLEAU C A, CALFA G D, LANE M C, et al. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis. 2009; 35 (2):219–233. doi: 10.1016/j.nbd.2009.05.001.
[CHAPLEAU C A, CALFA G D, LANE M C, et al. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations[J]. Neurobiol Dis, 2009, 35(2):219-233. DOI:10.1016/j.nbd.2009.05.001.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. JUGLOFF D G, JUNG B P, PURUSHOTHAM D, et al. Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2. Neurobiol Dis. 2005; 19 (1-2):18–27. doi: 10.1016/j.nbd.2004.11.002.
[JUGLOFF D G, JUNG B P, PURUSHOTHAM D, et al. Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2[J]. Neurobiol Dis, 2005, 19(1-2):18-27. DOI:10.1016/j.nbd.2004.11.002.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. BAAS P W, DEITCH J S, BLACK M M, et al. Polarity orientation of microtubules in hippocampal neurons:uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A. 1988; 85 (21):8335–8339. doi: 10.1073/pnas.85.21.8335.
[BAAS P W, DEITCH J S, BLACK M M, et al. Polarity orientation of microtubules in hippocampal neurons:uniformity in the axon and nonuniformity in the dendrite[J]. Proc Natl Acad Sci U S A, 1988, 85(21):8335-8339. DOI:10.1073/pnas.85.21.8335.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. CUI-WANG T, HANUS C, CUI T, et al. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell. 2012; 148 (1-2):309–321. doi: 10.1016/j.cell.2011.11.056.
[CUI-WANG T, HANUS C, CUI T, et al. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites[J]. Cell, 2012, 148(1-2):309-321. DOI:10.1016/j.cell.2011.11.056.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. HATANAKA Y, MURAKAMI F. In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells . J Comp Neurol. 2002; 454 (1):1–14. doi: 10.1002/cne.10421.
[HATANAKA Y, MURAKAMI F. In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells[J]. J Comp Neurol, 2002, 454(1):1-14. DOI:10.1002/cne.10421. ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. GAO W Q, HATTEN M E. Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science. 1993; 260 (5106):367–369. doi: 10.1126/science.8469990.
[GAO W Q, HATTEN M E. Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex[J]. Science, 1993, 260(5106):367-369. DOI:10.1126/science.8469990.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. CRAIG A M, JAREB M, BANKER G. Neuronal polarity. Curr Opin Neurobiol. 1992; 2 (5):602–606. doi: 10.1016/0959-4388(92)90025-g.
[CRAIG A M, JAREB M, BANKER G. Neuronal polarity[J]. Curr Opin Neurobiol, 1992, 2(5):602-606. DOI:10.1016/0959-4388(92)90025-g.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. KRAMER A P, KUWADA J Y. Formation of the receptive fields of leech mechanosensory neurons during embryonic development. J Neurosci. 1983; 3 (12):2474–2486. doi: 10.1523/JNEUROSCI.03-12-02474.1983.
[KRAMER A P, KUWADA J Y. Formation of the receptive fields of leech mechanosensory neurons during embryonic development[J]. J Neurosci, 1983, 3(12):2474-2486. DOI:10.1523/JNEUROSCI.03-12-02474.1983.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. GRUEBER W B, SAGASTI A. Self-avoidance and tiling:mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol. 2010; 2 (9) doi: 10.1101/cshperspect.a001750.
[GRUEBER W B, SAGASTI A. Self-avoidance and tiling:mechanisms of dendrite and axon spacing[J]. Cold Spring Harb Perspect Biol, 2010, 2(9):a001750. DOI:10.1101/cshperspect.a001750.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. SMITH C J, WATSON J D, VANHOVEN M K, et al. Netrin (UNC-6) mediates dendritic self-avoidance. Nat Neurosci. 2012; 15 (5):731–737. doi: 10.1038/nn.3065.
[SMITH C J, WATSON J D, VANHOVEN M K, et al. Netrin (UNC-6) mediates dendritic self-avoidance[J]. Nat Neurosci, 2012, 15(5):731-737. DOI:10.1038/nn.3065.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. SMITH C J, WATSON J D, SPENCER W C, et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans . Dev Biol. 2010; 345 (1):18–33. doi: 10.1016/j.ydbio.2010.05.502.
[SMITH C J, WATSON J D, SPENCER W C, et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans [J]. Dev Biol, 2010, 345(1):18-33. DOI:10.1016/j.ydbio.2010.05.502. ] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. FUERST P G, BRUCE F, TIAN M, et al. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron. 2009; 64 (4):484–497. doi: 10.1016/j.neuron.2009.09.027.
[FUERST P G, BRUCE F, TIAN M, et al. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina[J]. Neuron, 2009, 64(4):484-497. DOI:10.1016/j.neuron.2009.09.027.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. LEFEBVRE J L, KOSTADINOV D, CHEN W V, et al. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature. 2012; 488 (7412):517–521. doi: 10.1038/nature11305.
[LEFEBVRE J L, KOSTADINOV D, CHEN W V, et al. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system[J]. Nature, 2012, 488(7412):517-521. DOI:10.1038/nature11305.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. KANO M, HASHIMOTO K. Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development. Cerebellum. 2012; 11 (2):449–450. doi: 10.1007/s12311-011-0337-3.
[KANO M, HASHIMOTO K. Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development[J]. Cerebellum, 2012, 11(2):449-450. DOI:10.1007/s12311-011-0337-3.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. SANES J R, ZIPURSKY S L. Design principles of insect and vertebrate visual systems. Neuron. 2010; 66 (1):15–36. doi: 10.1016/j.neuron.2010.01.018.
[SANES J R, ZIPURSKY S L. Design principles of insect and vertebrate visual systems[J]. Neuron, 2010, 66(1):15-36. DOI:10.1016/j.neuron.2010.01.018.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. IMAI T, SAKANO H, VOSSHALL L B. Topographic mapping-the olfactory system. Cold Spring Harb Perspect Biol. 2010; 2 (8):a001776. doi: 10.1101/cshperspect.a001776.
[IMAI T, SAKANO H, VOSSHALL L B. Topographic mapping-the olfactory system[J]. Cold Spring Harb Perspect Biol, 2010, 2(8):a001776. DOI:10.1101/cshperspect.a001776.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. SPRUSTON N. Pyramidal neurons:dendritic structure and synaptic integration. Nat Rev Neurosci. 2008; 9 (3):206–221. doi: 10.1038/nrn2286.
[SPRUSTON N. Pyramidal neurons:dendritic structure and synaptic integration[J]. Nat Rev Neurosci, 2008, 9(3):206-221. DOI:10.1038/nrn2286.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. SMITH C J, O'BRIEN T, CHATZIGEORGIOU M, et al. Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization. Neuron. 2013; 79 (2):266–280. doi: 10.1016/j.neuron.2013.05.009.
[SMITH C J, O'BRIEN T, CHATZIGEORGIOU M, et al. Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization[J]. Neuron, 2013, 79(2):266-280. DOI:10.1016/j.neuron.2013.05.009.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. TSALIK E L, NIACARIS T, WENICK A S, et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system . Dev Biol. 2003; 263 (1):81–102. doi: 10.1016/s0012-1606(03)00447-0.
[TSALIK E L, NIACARIS T, WENICK A S, et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system[J]. Dev Biol, 2003, 263(1):81-102. DOI:10.1016/s0012-1606(03)00447-0. ] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. SUGIMURA K, SATOH D, ESTES P, et al. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron. 2004; 43 (6):809–822. doi: 10.1016/j.neuron.2004.08.016.
[SUGIMURA K, SATOH D, ESTES P, et al. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt[J]. Neuron, 2004, 43(6):809-822. DOI:10.1016/j.neuron.2004.08.016.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. HAND R, BORTONE D, MATTAR P, et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron. 2005; 48 (1):45–62. doi: 10.1016/j.neuron.2005.08.032.
[HAND R, BORTONE D, MATTAR P, et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex[J]. Neuron, 2005, 48(1):45-62. DOI:10.1016/j.neuron.2005.08.032.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
32. FLORIO M, LETO K, MUZIO L, et al. Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development. Development. 2012; 139 (13):2308–2320. doi: 10.1242/dev.075861.
[FLORIO M, LETO K, MUZIO L, et al. Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development[J]. Development, 2012, 139(13):2308-2320. DOI:10.1242/dev.075861.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. ZOU W, DONG X, BROEDERDORF T R, et al. A dendritic guidance receptor complex brings together distinct actin regulators to drive efficient f-actin assembly and branching. Dev Cell. 2018; 45 (3):362–375. doi: 10.1016/j.devcel.2018.04.008.
[ZOU W, DONG X, BROEDERDORF T R, et al. A dendritic guidance receptor complex brings together distinct actin regulators to drive efficient f-actin assembly and branching[J]. Dev Cell, 2018, 45(3):362-375.e3. DOI:10.1016/j.devcel.2018.04.008.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. CHEN H, FIRESTEIN B L. RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. J Neurosci. 2007; 27 (31):8378–8386. doi: 10.1523/JNEUROSCI.0872-07.2007.
[CHEN H, FIRESTEIN B L. RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels[J]. J Neurosci, 2007, 27(31):8378-8386. DOI:10.1523/JNEUROSCI.0872-07.2007.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. LEEMHUIS J, BOUTILLIER S, BARTH H, et al. Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites. J Biol Chem. 2004; 279 (1):585–596. doi: 10.1074/jbc.M307066200.
[LEEMHUIS J, BOUTILLIER S, BARTH H, et al. Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites[J]. J Biol Chem, 2004, 279(1):585-596. DOI:10.1074/jbc.M307066200.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
36. NEWEY S E, VELAMOOR V, GOVEK E E, et al. Rho GTPases, dendritic structure, and mental retardation. J Neurobiol. 2005; 64 (1):58–74. doi: 10.1002/neu.20153.
[NEWEY S E, VELAMOOR V, GOVEK E E, et al. Rho GTPases, dendritic structure, and mental retardation[J]. J Neurobiol, 2005, 64(1):58-74. DOI:10.1002/neu.20153.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
37. ZOU W, YADAV S, DEVAULT L, et al. RAB-10-dependent membrane transport is required for dendrite arborization[J/OL]. PLoS Genet, 2015, 11(9): e1005484. DOI: .10.1371/journal.pgen.1005484 [ PMC free article ] [ PubMed ]
38. TAYLOR C A, YAN J, HOWELL A S, et al. RAB-10 regulates dendritic branching by balancing dendritic transport[J/OL]. PLoS Genet, 2015, 11(12): e1005695. DOI: .10.1371/journal.pgen.1005695 [ PMC free article ] [ PubMed ]
39. NAKAYAMA A Y, HARMS M B, LUO L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci. 2000; 20 (14):5329–5338. doi: 10.1523/JNEUROSCI.20-14-05329.2000.
[NAKAYAMA A Y, HARMS M B, LUO L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons[J]. J Neurosci, 2000, 20(14):5329-5338. DOI:10.1523/JNEUROSCI.20-14-05329.2000.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. CACERES A, MAUTINO J, KOSIK K S. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron. 1992; 9 (4):607–618. doi: 10.1016/0896-6273(92)90025-9.
[CACERES A, MAUTINO J, KOSIK K S. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation[J]. Neuron, 1992, 9(4):607-618. DOI:10.1016/0896-6273(92)90025-9.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
41. HARTERINK M, EDWARDS S L, DE HAAN B, et al. Local microtubule organization promotes cargo transport in C. elegans dendrites . J Cell Sci. 2018; 131 (20):pii. jcs223107. doi: 10.1242/jcs.223107.
[HARTERINK M, EDWARDS S L, DE HAAN B, et al. Local microtubule organization promotes cargo transport in C. elegans dendrites[J]. J Cell Sci, 2018, 131(20):pii. jcs223107. DOI:10.1242/jcs.223107. ] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
42. MANIAR T A, KAPLAN M, WANG G J, et al. UNC-33(CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci. 2011; 15 (1):48–56. doi: 10.1038/nn.2970.
[MANIAR T A, KAPLAN M, WANG G J, et al. UNC-33(CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting[J]. Nat Neurosci, 2011, 15(1):48-56. DOI:10.1038/nn.2970.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. RICHARDSON C E, SPILKER K A, CUEVA J G, et al. PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons[J/OL]. Elife, 2014, 3: e01498. DOI: .10.7554/eLife.01498 [ PMC free article ] [ PubMed ]
44. SUNDARARAJAN L, SMITH C J, WATSON J D, et al. Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response[J/OL]. PLoS Genetics, 2019, 15(6): e1008228. DOI: .10.1371/journal.pgen.1008228 [ PMC free article ] [ PubMed ]
45. TANG L T, DIAZ-BALZAC C A, RAHMAN M, et al. TIAM-1/GEF can shape somatosensory dendrites independently of its GEF activity by regulating F-actin localization[J/OL]. Elife, 2019, 8: e38949. DOI: .10.7554/eLife.38949 [ PMC free article ] [ PubMed ]
46. KIM I H, ROSSI M A, ARYAL D K, et al. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci. 2015; 18 (6):883–891. doi: 10.1038/nn.4015.
[KIM I H, ROSSI M A, ARYAL D K, et al. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine[J]. Nat Neurosci, 2015, 18(6):883-891. DOI:10.1038/nn.4015.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. SUNDARARAJAN L, SMITH C J, WATSON J D, et al. Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response[J/OL]. PLoS Genet, 2019, 15(6): e1008228. DOI: .10.1371/journal.pgen.1008228 [ PMC free article ] [ PubMed ]
48. LIAO C P, LI H, LEE H H, et al. Cell-autonomous regulation of dendrite self-avoidance by the wnt secretory factor MIG-14/Wntless. Neuron. 2018; 98 (2):320–334. doi: 10.1016/j.neuron.2018.03.031.
[LIAO C P, LI H, LEE H H, et al. Cell-autonomous regulation of dendrite self-avoidance by the wnt secretory factor MIG-14/Wntless[J]. Neuron, 2018, 98(2):320-334.e6. DOI:10.1016/j.neuron.2018.03.031.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
49. ZOU W, SHEN A, DONG X, et al. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans . Elife. 2016; 5 doi: 10.7554/ELIFE.18345.
[ZOU W, SHEN A, DONG X, et al. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans [J]. Elife, 2016, 5. DOI:10.7554/ELIFE.18345. ] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
50. DÍAZ-BALZAC C A, RAHMAN M, LÁZARO-PEÑA M I, et al. Muscle- and skin-derived cues jointly orchestrate patterning of somatosensory dendrites. Curr Biol. 2016; 26 (17):2397. doi: 10.1016/j.cub.2016.07.078.
[DÍAZ-BALZAC C A, RAHMAN M, LÁZARO-PEÑA M I, et al. Muscle- and skin-derived cues jointly orchestrate patterning of somatosensory dendrites[J]. Curr Biol, 2016, 26(17):2397. DOI:10.1016/j.cub.2016.07.078.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
51. GATES M A, TAI C C, MACKLIS J D. Neocortical neurons lacking the protein-tyrosine kinase B receptor display abnormal differentiation and process elongation in vitro and in vivo . Neuroscience. 2000; 98 (3):437–447. doi: 10.1016/s0306-4522(00)00106-8.
[GATES M A, TAI C C, MACKLIS J D. Neocortical neurons lacking the protein-tyrosine kinase B receptor display abnormal differentiation and process elongation in vitro and in vivo [J]. Neuroscience, 2000, 98(3):437-447. DOI:10.1016/s0306-4522(00)00106-8. ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
52. LAZO O M, GONZALEZ A, ASCAÑO M, et al. BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching. J Neurosci. 2013; 33 (14):6112–6122. doi: 10.1523/JNEUROSCI.4630-12.2013.
[LAZO O M, GONZALEZ A, ASCAÑO M, et al. BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching[J]. J Neurosci, 2013, 33(14):6112-6122. DOI:10.1523/JNEUROSCI.4630-12.2013.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
53. PINO D, CHOE Y, PLEASURE S J. Wnt5a controls neurite development in olfactory bulb interneurons[J/OL]. ASN Neuro, 2011, 3(3): e00059. DOI: .10.1042/AN20100038 [ PMC free article ] [ PubMed ]
54. WHITFORD K L, MARILLAT V, STEIN E, et al. Regulation of cortical dendrite development by Slit-Robo interactions. Neuron. 2002; 33 (1):47–61. doi: 10.1016/s0896-6273(01)00566-9.
[WHITFORD K L, MARILLAT V, STEIN E, et al. Regulation of cortical dendrite development by Slit-Robo interactions[J]. Neuron, 2002, 33(1):47-61. DOI:10.1016/s0896-6273(01)00566-9.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
55. KIDD T, BLAND K S, GOODMAN C S. Slit is the midline repellent for the robo receptor in Drosophila. Cell. 1999; 96 (6):785–794. doi: 10.1016/s0092-8674(00)80589-9.
[KIDD T, BLAND K S, GOODMAN C S. Slit is the midline repellent for the robo receptor in Drosophila[J]. Cell, 1999, 96(6):785-794. DOI:10.1016/s0092-8674(00)80589-9.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
56. SALZBERG Y, DÍAZ-BALZAC C A, RAMIREZ-SUAREZ N J, et al. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans. Cell. 2013; 155 (2):308–320. doi: 10.1016/j.cell.2013.08.058.
[SALZBERG Y, DÍAZ-BALZAC C A, RAMIREZ-SUAREZ N J, et al. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans[J]. Cell, 2013, 155(2):308-320. DOI:10.1016/j.cell.2013.08.058.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
57. LIANG X, DONG X, MOERMAN D G, et al. Sarcomeres pattern proprioceptive sensory dendritic endings through UNC-52/Perlecan in C. elegans . Dev Cell. 2015; 33 (4):388–400. doi: 10.1016/j.devcel.2015.03.010.
[LIANG X, DONG X, MOERMAN D G, et al. Sarcomeres pattern proprioceptive sensory dendritic endings through UNC-52/Perlecan in C. elegans [J]. Dev Cell, 2015, 33(4):388-400. DOI:10.1016/j.devcel.2015.03.010. ] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
58. DONG X, LIU O W, HOWELL A S, et al. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis. Cell. 2013; 155 (2):296–307. doi: 10.1016/j.cell.2013.08.059.
[DONG X, LIU O W, HOWELL A S, et al. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis[J]. Cell, 2013, 155(2):296-307. DOI:10.1016/j.cell.2013.08.059.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
59. RAMIREZ-SUAREZ N J, BELALCAZAR H M, SALAZAR C J, et al. Axon-dependent patterning and maintenance of somatosensory dendritic arbors. Dev Cell. 2019; 48 (2):229–244. doi: 10.1016/j.devcel.2018.12.015.
[RAMIREZ-SUAREZ N J, BELALCAZAR H M, SALAZAR C J, et al. Axon-dependent patterning and maintenance of somatosensory dendritic arbors[J]. Dev Cell, 2019, 48(2):229-244.e4. DOI:10.1016/j.devcel.2018.12.015.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
60. CHEN C H, HSU H W, CHANG Y H, et al. Adhesive L1CAM-Robo signaling aligns growth cone f-actin dynamics to promote axon-dendrite fasciculation in c. elegans . Dev Cell. 2019; 49 (3):490–491. doi: 10.1016/j.devcel.2019.04.028.
[CHEN C H, HSU H W, CHANG Y H, et al. Adhesive L1CAM-Robo signaling aligns growth cone f-actin dynamics to promote axon-dendrite fasciculation in c. elegans [J]. Dev Cell, 2019, 49(3):490-491. DOI:10.1016/j.devcel.2019.04.028. ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
61. SOBA P, ZHU S, EMOTO K, et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron. 2007; 54 (3):403–416. doi: 10.1016/j.neuron.2007.03.029.
[SOBA P, ZHU S, EMOTO K, et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization[J]. Neuron, 2007, 54(3):403-416. DOI:10.1016/j.neuron.2007.03.029.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
62. MATTHEWS B J, KIM M E, FLANAGAN J J, et al. Dendrite self-avoidance is controlled by Dscam. Cell. 2007; 129 (3):593–604. doi: 10.1016/j.cell.2007.04.013.
[MATTHEWS B J, KIM M E, FLANAGAN J J, et al. Dendrite self-avoidance is controlled by Dscam[J]. Cell, 2007, 129(3):593-604. DOI:10.1016/j.cell.2007.04.013.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
63. KUFFLER S W. Discharge patterns and functional organization of mammalian retina. J Neurophysiol. 1953; 16 (1):37–68. doi: 10.1152/jn.1953.16.1.37.
[KUFFLER S W. Discharge patterns and functional organization of mammalian retina[J]. J Neurophysiol, 1953, 16(1):37-68. DOI:10.1152/jn.1953.16.1.37.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
64. YAMAGATA M, SANES J R. Expanding the Ig superfamily code for laminar specificity in retina:expression and role of contactins. J Neurosci. 2012; 32 (41):14402–14414. doi: 10.1523/JNEUROSCI.3193-12.2012.
[YAMAGATA M, SANES J R. Expanding the Ig superfamily code for laminar specificity in retina:expression and role of contactins[J]. J Neurosci, 2012, 32(41):14402-14414. DOI:10.1523/JNEUROSCI.3193-12.2012.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
65. KIM M E, SHRESTHA B R, BLAZESKI R, et al. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron. 2012; 73 (1):79–91. doi: 10.1016/j.neuron.2011.10.033.
[KIM M E, SHRESTHA B R, BLAZESKI R, et al. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons[J]. Neuron, 2012, 73(1):79-91. DOI:10.1016/j.neuron.2011.10.033.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
66. HAN C, WANG D, SOBA P, et al. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron. 2012; 73 (1):64–78. doi: 10.1016/j.neuron.2011.10.036.
[HAN C, WANG D, SOBA P, et al. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space[J]. Neuron, 2012, 73(1):64-78. DOI:10.1016/j.neuron.2011.10.036.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
67. KERRISK M E, GREER C A, KOLESKE A J. Integrin α3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior. J Neurosci. 2013; 33 (16):6742–6752. doi: 10.1523/JNEUROSCI.0528-13.2013.
[KERRISK M E, GREER C A, KOLESKE A J. Integrin α3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior[J]. J Neurosci, 2013, 33(16):6742-6752. DOI:10.1523/JNEUROSCI.0528-13.2013.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
68. LIU O W, SHEN K. The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans . Nat Neurosci. 2012; 15 (1):57–63. doi: 10.1038/nn.2978.
[LIU O W, SHEN K. The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans [J]. Nat Neurosci, 2012. 15(1):57-63. DOI:10.1038/nn.2978. ] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
69. CELESTRIN K, DÍAZ-BALZAC C A, TANG L, et al. Four specific immunoglobulin domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in Caenorhabditis elegans. Development. 2018; 145 (10) doi: 10.1242/dev.158881.
[CELESTRIN K, DÍAZ-BALZAC C A, TANG L, et al. Four specific immunoglobulin domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in Caenorhabditis elegans[J]. Development, 2018, 145(10). DOI:10.1242/dev.158881.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
70. MERZ D C, ZHENG H, KILLEEN M T, et al. Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo . Genetics. 2001; 158 (3):1071–1080. doi: 10.1002/GEPI.1019.
[MERZ D C, ZHENG H, KILLEEN M T, et al. Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo [J]. Genetics, 2001, 158(3):1071-1080. DOI:10.1002/GEPI.1019. ] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
71. BOTHWELL M. NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol. 2014; 220 :3–15. doi: 10.1007/978-3-642-45106-5_1.
[BOTHWELL M. NGF, BDNF, NT3, and NT4[J]. Handb Exp Pharmacol, 2014, 220:3-15. DOI:10.1007/978-3-642-45106-5_1.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
72. O'NEILL K M, KWON M, DONOHUE K E, et al. Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor. Cell Mol Life Sci. 2017; 74 (23):4369–4385. doi: 10.1007/s00018-017-2589-7.
[O'NEILL K M, KWON M, DONOHUE K E, et al. Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor[J]. Cell Mol Life Sci, 2017, 74(23):4369-4385. DOI:10.1007/s00018-017-2589-7.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
73. PURAM S V, KIM A H, IKEUCHI Y, et al. A CaMKIIβ signaling pathway at the centrosome regulates dendrite patterning in the brain. Nat Neurosci. 2011; 14 (8):973–983. doi: 10.1038/NN.2857.
[PURAM S V, KIM A H, IKEUCHI Y, et al. A CaMKIIβ signaling pathway at the centrosome regulates dendrite patterning in the brain[J]. Nat Neurosci, 2011, 14(8):973-983. DOI:10.1038/NN.2857.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
74. KULKARNI V A, FIRESTEIN B L. The dendritic tree and brain disorders. Mol Cell Neurosci. 2012; 50 (1):10–20. doi: 10.1016/j.mcn.2012.03.005.
[KULKARNI V A, FIRESTEIN B L. The dendritic tree and brain disorders[J]. Mol Cell Neurosci, 2012, 50(1):10-20. DOI:10.1016/j.mcn.2012.03.005.] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press