1.
Hu S, Gao R, Liu L, et al Summary of the 2018 report on cardiovascular diseases in China.
Chin Circul J.
2019;
34
(3):209–220.
[
Google Scholar
]
2.
Fung Y C, Cowin S C Biomechanics. Mechanical properties of living tissues.
Bioviscoelastic Solids.
1994;
61
(4):464–465.
[
Google Scholar
]
3.
姜宗来 心血管生物力学研究的新进展
医用生物力学
2010;
25
(5):313–315, 351. doi: 10.3871/j.1004-7220.2010.5.315..
[
CrossRef
]
[
Google Scholar
]
4.
Han Y, Huang K, Yao Q P, et al Mechanobiology in vascular remodeling.
Natl Sci Rev.
2018;
5
(6):933–946. doi: 10.1093/nsr/nwx153.
[
CrossRef
]
[
Google Scholar
]
5.
Akintewe O O, Roberts E G, Rim N G, et al Design approaches to myocardial and vascular tissue engineering.
Annu Rev Biomed Eng.
2017;
19
:389–414. doi: 10.1146/annurev-bioeng-071516-044641.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Sotomi Y, Onuma Y, Collet C, et al Bioresorbable scaffold: The emerging reality and future directions.
Circ Res.
2017;
120
(8):1341–1352. doi: 10.1161/CIRCRESAHA.117.310275.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Holzapfel G A, Ogden R W Biomechanical relevance of the microstructure in artery walls with a focus on passive and active components.
Am J Physiol Heart Circ Physiol.
2018;
315
(3):H540–H549. doi: 10.1152/ajpheart.00117.2018.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Konidala S, Gutterman D D Coronary vasospasm and the regulation of coronary blood flow.
Prog Cardiovasc Dis.
2004;
46
(4):349–373. doi: 10.1016/j.pcad.2003.10.001.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Mulvany M J, Halpern W Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats.
Circ Res.
1977;
41
(1):19–26. doi: 10.1161/01.RES.41.1.19.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Young M A, Vatner S F Regulation of large coronary arteries.
Circ Res.
1986;
59
(6):579–596. doi: 10.1161/01.RES.59.6.579.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
Landmesser U, Hornig B, Drexler H. Endothelial function: A critical determinant in atherosclerosis?. Circulation, 2004, 109(21 Suppl 1): II27-1133.
13.
Lu X, Bean J S, Kassab G S, et al Protein kinase c inhibition ameliorates functional endothelial insulin resistance and vascular smooth muscle cell hypersensitivity to insulin in diabetic hypertensive rats.
Cardiovasc Diabetol.
2011;
10
:48. doi: 10.1186/1475-2840-10-48.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Chen H, Kassab G S Microstructure-based biomechanics of coronary arteries in health and disease.
J Biomech.
2016;
49
(12):2548–2559. doi: 10.1016/j.jbiomech.2016.03.023.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Gasser T C. Vascular tissue biomechanics: Constitutive modeling of the arterial wall. 2019.
17.
Humphrey J D. Cardiovascular solid mechanics. New York: Springer-Verlag, 2002.
18.
Huo Y, Zhao X, Cheng Y, et al Two-layer model of coronary artery vasoactivity.
J Appl Physiol.
2013;
114
(10):1451–1459. doi: 10.1152/japplphysiol.01237.2012.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
Huo Y, Cheng Y, Zhao X, et al Biaxial vasoactivity of porcine coronary artery.
Am J Physiol Heart Circ Physiol.
2012;
302
(10):H2058–2063. doi: 10.1152/ajpheart.00758.2011.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Lu X, Kassab G S Vasoactivity of blood vessels using a novel isovolumic myograph.
Ann Biomed Eng.
2007;
35
(3):356–366. doi: 10.1007/s10439-006-9243-0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Carpenter H J, Gholipour A, Ghayesh M H, et al A review on the biomechanics of coronary arteries.
Int J Eng Sci.
2020;
147
:103201. doi: 10.1016/j.ijengsci.2019.103201.
[
CrossRef
]
[
Google Scholar
]
22.
Holzapfel G A, Niestrawska J A, Ogden R W, et al Modelling non-symmetric collagen fibre dispersion in arterial walls.
J R Soc Interface.
2015;
12
(106):20150188. doi: 10.1098/rsif.2015.0188.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Holzapfel G A, Ogden R W Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
J R Soc Interface.
2010;
7
(46):787–799. doi: 10.1098/rsif.2009.0357.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Rachev A, Hayashi K Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries.
Ann Biomed Eng.
1999;
27
(4):459–468. doi: 10.1114/1.191.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
Carlson B E, Secomb T W A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle.
Microcirculation.
2005;
12
(4):327–338. doi: 10.1080/10739680590934745.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Yang J, Clark J W Jr., Bryan R M, et al The myogenic response in isolated rat cerebrovascular arteries: Vessel model.
Med Eng Phys.
2003;
25
(8):711–717. doi: 10.1016/S1350-4533(03)00101-2.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
Holzapfel G A, Ogden R W An arterial constitutive model accounting for collagen content and cross-linking.
J Mech Phys Solids.
2019;
136
:103682.
[
Google Scholar
]
28.
Niestrawska J A, Viertler C, Regitnig P, et al Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: Experimental analysis and modelling.
J R Soc Interface.
2016;
13
(124):20160620. doi: 10.1098/rsif.2016.0620.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
Wagner H P, Humphrey J D Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: Basilar versus common carotid.
J Biomech Eng.
2011;
133
(5):051009. doi: 10.1115/1.4003873.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
30.
Stalhand J A, Klarbring G A, Holzapfel A A mechanochemical 3D continuum model for smooth muscle contraction under finite strains.
J Theor Biol.
2011;
268
(1):120–130. doi: 10.1016/j.jtbi.2010.10.008.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
Lu X, Pandit A, Kassab G S Biaxial incremental homeostatic elastic moduli of coronary artery: Two-layer model.
Am J Physiol Heart Circ Physiol.
2004;
287
(4):H1663–H1669. doi: 10.1152/ajpheart.00226.2004.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
Hayman D M, Zhang J, Liu Q, et al Smooth muscle cell contraction increases the critical buckling pressure of arteries.
J Biomech.
2013;
46
(4):841–844. doi: 10.1016/j.jbiomech.2012.11.040.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
33.
Murtada S I, Ferruzzi J, Yanagisawa H, et al Reduced biaxial contractility in the descending thoracic aorta of fibulin-5 deficient mice.
J Biomech Eng.
2016;
138
(5):051008. doi: 10.1115/1.4032938.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
34.
Takamizawa K. Biaxial contractile mechanics of common carotid arteries of rabbit. J Biomech Eng, 2015, 137(3). DOI: 10.1115/1.4028988.
35.
Caulk A W, Humphrey J D, Murtada S I Fundamental roles of axial stretch in isometric and isobaric evaluations of vascular contractility.
J Biomech Eng.
2019;
141
(3):0310081–03100810.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
36.
Wang C, Garcia M, Lu X, et al Three-dimensional mechanical properties of porcine coronary arteries: A validated two-layer model.
Am J Physiol Heart Circ Physiol.
2006;
291
(3):H1200–H1209. doi: 10.1152/ajpheart.01323.2005.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
Luo T, Chen H, Kassab G S 3D reconstruction of coronary artery vascular smooth muscle cells.
PLoS One.
2016;
11
(2):e0147272. doi: 10.1371/journal.pone.0147272.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
Sommer G, Regitnig P, Költringer L, et al Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings.
Am J Physiol-Heart C.
2010;
298
(3):H898–H912. doi: 10.1152/ajpheart.00378.2009.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
Hollander Y, Durban D, Lu X, et al Experimentally validated microstructural 3D constitutive model of coronary arterial media.
J Biomech Eng.
2011;
133
(3):031007. doi: 10.1115/1.4003324.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
Chen H, Guo X, Luo T, et al A validated 3D microstructure-based constitutive model of coronary artery adventitia.
J Appl Physiol.
2016;
121
(1):333–342. doi: 10.1152/japplphysiol.00937.2015.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
Sommer G, Benedikt C, Niestrawska J A, et al Mechanical response of human subclavian and iliac arteries to extension, inflation and torsion.
Acta Biomater.
2018;
75
:235–252. doi: 10.1016/j.actbio.2018.05.043.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
Chen H, Kassab G S Microstructure-based constitutive model of coronary artery with active smooth muscle contraction.
Sci Rep.
2017;
7
(1):9339. doi: 10.1038/s41598-017-08748-7.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
43.
Ambrosi D, Ben Amar M, Cyron C J, et al Growth and remodelling of living tissues: Perspectives, challenges and opportunities.
J R Soc Interface.
2019;
16
(157):20190233. doi: 10.1098/rsif.2019.0233.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
44.
Valdez-Jasso D, Bia D, Zocalo Y, et al Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under
in vivo
and
ex vivo
conditions
.
Ann Biomed Eng.
2011;
39
(5):1438–1456. doi: 10.1007/s10439-010-0236-7.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
45.
Amabili M, Balasubramanian P, Bozzo I, et al Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas.
J Mech Behav Biomed Mater.
2019;
99
:27–46. doi: 10.1016/j.jmbbm.2019.07.008.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
46.
Holzapfel G A, Ogden R W On the tension-compression switch in soft fibrous solids.
Eur J Mech A/Solid.
2015;
49
:561–569. doi: 10.1016/j.euromechsol.2014.09.005.
[
CrossRef
]
[
Google Scholar
]
47.
Zhang W, Liu Y, Kassab G S Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: Implications for vessel fatigue.
Am J Physiol Heart Circ Physiol.
2007;
293
(4):H2355–H2360. doi: 10.1152/ajpheart.00423.2007.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
48.
Bauer M, Morales-Orcajo E, Klemm L, et al Biomechanical and microstructural characterisation of the porcine stomach wall: Location- and layer-dependent investigations.
Acta Biomater.
2019;
102
:83–99.
[
PubMed
]
[
Google Scholar
]
49.
Pandit A, Lu X, Wang C, et al Biaxial elastic material properties of porcine coronary media and adventitia.
Am J Physiol Heart Circ Physiol.
2005;
288
(6):H2581–H2587. doi: 10.1152/ajpheart.00648.2004.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
50.
Chen H, Slipchenko M N, Liu Y, et al Biaxial deformation of collagen and elastin fibers in coronary adventitia.
J Appl Physiol.
2013;
115
(11):1683–1693. doi: 10.1152/japplphysiol.00601.2013.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
51.
Chen H, Luo T, Zhao X, et al Microstructural constitutive model of active coronary media.
Biomaterials.
2013;
34
(31):7575–7583. doi: 10.1016/j.biomaterials.2013.06.035.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
52.
Fung Y C, Fronek K, Patitucci P Pseudoelasticity of arteries and the choice of its mathematical expression.
Am J Physiol.
1979;
237
(5):H620–H631.
[
PubMed
]
[
Google Scholar
]
53.
Zhang W, Lu X, Kassab G S Shear modulus of porcine coronary artery in reference to a new strain measure.
Biomaterials.
2007;
28
(31):4733–4738. doi: 10.1016/j.biomaterials.2007.07.025.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
54.
Zhang W, Chen H Y, Kassab G S A rate-insensitive linear viscoelastic model for soft tissues.
Biomaterials.
2007;
28
(24):3579–3586. doi: 10.1016/j.biomaterials.2007.04.040.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
56.
Zhang W, Wang C, Kassab G S The mathematical formulation of a generalized Hooke’s law for blood vessels.
Biomaterials.
2007;
28
(24):3569–3578. doi: 10.1016/j.biomaterials.2007.04.030.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
57.
Lanir Y Constitutive equations for fibrous connective tissues.
J Biomech.
1983;
16
(1):1–12. doi: 10.1016/0021-9290(83)90041-6.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
58.
Lanir Y A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues.
J Biomech.
1979;
12
(6):423–436. doi: 10.1016/0021-9290(79)90027-7.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
59.
Humphrey J D, Yin F C A new constitutive formulation for characterizing the mechanical behavior of soft tissues.
Biophys J.
1987;
52
(4):563–570. doi: 10.1016/S0006-3495(87)83245-9.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
60.
Holzapfel G A, Gasser T C, Ogden R W A new constitutive framework for arterial wall mechanics and a comparative study of material models.
J Elast.
2000;
61
(1-3):1–48.
[
Google Scholar
]
61.
Holzapfel G A, Gasser T C, Stadler M A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis.
Eur J Mech A/Solid.
2002;
21
(3):441–463. doi: 10.1016/S0997-7538(01)01206-2.
[
CrossRef
]
[
Google Scholar
]
62.
Gasser T C, Ogden R W, Holzapfel G A Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.
J R Soc Interface.
2006;
3
(6):15–35. doi: 10.1098/rsif.2005.0073.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
63.
Sáez P, Peña E, Martínez M A A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries.
Ann Biomed Eng.
2014;
42
(6):1158–1169. doi: 10.1007/s10439-014-0995-7.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
64.
Holzapfel G A, Ogden R W Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues.
Eur J Mech A/Solids.
2017;
66
:193–200. doi: 10.1016/j.euromechsol.2017.07.005.
[
CrossRef
]
[
Google Scholar
]
65.
Li K, Ogden R W, Holzapfel G A Computational method for excluding fibers under compression in modeling soft fibrous solids.
Eur J Mech.
2016;
57
:178–193. doi: 10.1016/j.euromechsol.2015.11.003.
[
CrossRef
]
[
Google Scholar
]
66.
Bevan J A, Hwa J J Myogenic tone and cerebral vascular autoregulation: The role of a stretch-dependent mechanism.
Ann Biomed Eng.
1985;
13
(3-4):281–286. doi: 10.1007/BF02584245.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
67.
Holzapfel G A, Ogden R W, Sherifova S On fibre dispersion modelling of soft biological tissues: A review.
Proc Math Phys Eng Sci.
2019;
475
:2224.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
68.
Holzapfel G A, Gasser T C Computational stress-deformation analysis of arterial walls including high-pressure response.
Int J Cardiol.
2007;
116
(1):78–85. doi: 10.1016/j.ijcard.2006.03.033.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
69.
Li K, Ogden R W, Holzapfel G A A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.
J R Soc Interface.
2018;
15
(138):20170766. doi: 10.1098/rsif.2017.0766.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
70.
Rachev A, Shazly T A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen.
J Mech Behav Biomed Mater.
2019;
90
:61–72. doi: 10.1016/j.jmbbm.2018.09.047.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
71.
Wang Y, Zeinali-Davarani S, Zhang Y Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
J Biomech.
2016;
49
(12):2358–2365. doi: 10.1016/j.jbiomech.2016.02.027.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
72.
Carboni M, Desch G W, Weizsacker H W Passive mechanical properties of porcine left circumflex artery and its mathematical description.
Med Eng Phys.
2007;
29
(1):8–16. doi: 10.1016/j.medengphy.2006.01.004.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
73.
Humphrey J D. Cardiovascular solid mechanics: Cells, tissues, and organs. Springer Science & Business Media, 2013.
74.
Hayashi K, Hirayama E Age-related changes of wall composition and collagen cross-linking in the rat carotid artery – in relation with arterial mechanics.
J Mech Behav Biomed Mater.
2017;
65
:881–889. doi: 10.1016/j.jmbbm.2016.10.007.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
75.
Annovazzi L, Genna F An engineering, multiscale constitutive model for fiber-forming collagen in tension.
J Biomed Mater Res A.
2010;
92A
(1):254–266. doi: 10.1002/jbm.a.32352.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
76.
Chen H, Liu Y, Zhao X, et al A micromechanics finite-strain constitutive model of fibrous tissue.
J Mech Phys Solids.
2011;
59
(9):1823–1837. doi: 10.1016/j.jmps.2011.05.012.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
77.
Sigaeva T, Sommer G, Holzapfel G, et al Anisotropic residual stresses in arteries.
J R Soc Interface.
2019;
16
(151):20190029. doi: 10.1098/rsif.2019.0029.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
78.
Leng X, Davis L, Deng X, et al. An inverse analysis of cohesive zone model parameter values for human fibrous cap mode I tearing. arXiv, 2018: 1806.05013.
79.
Ahuja A, Noblet J N, Trudnowski T, et al Biomechanical material characterization of stanford type-B dissected porcine aortas.
Front Physiol.
2018;
9
:1317. doi: 10.3389/fphys.2018.01317.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
80.
Ayyalasomayajula V, Pierrat B, Badel P A computational model for understanding the micro-mechanics of collagen fiber network in the tunica adventitia.
Biomech Model Mechanobiol.
2019;
18
(5):1507–1528. doi: 10.1007/s10237-019-01161-1.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
81.
Lee Y U, Naito Y, Kurobe H, et al Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice.
J Biomech.
2013;
46
(13):2277–2282. doi: 10.1016/j.jbiomech.2013.06.013.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
82.
Cornelissen A J, Dankelman J, Vanbavel E, et al Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: A model study.
Am J Physiol Heart Circ Physiol.
2002;
282
(6):H2224–H2237. doi: 10.1152/ajpheart.00491.2001.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
83.
Yang J, Clark J W Jr, Bryan R M, et al The myogenic response in isolated rat cerebrovascular arteries: Smooth muscle cell model.
Med Eng Phys.
1002;
14
(7):691–709.
[
PubMed
]
[
Google Scholar
]
84.
Algranati D, Kassab G S, Lanir Y Flow restoration post revascularization predicted by stenosis indexes: Sensitivity to hemodynamic variability.
Am J Physiol Heart Circ Physiol.
2013;
305
(2):H145–H154. doi: 10.1152/ajpheart.00061.2012.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
85.
Algranati D, Kassab G S, Lanir Y Why is the subendocardium more vulnerable to ischemia? A new paradigm.
Am J Physiol Heart Circ Physiol.
2011;
300
(3):H1090–H1100. doi: 10.1152/ajpheart.00473.2010.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
86.
Algranati D, Kassab G S, Lanir Y Mechanisms of myocardium-coronary vessel interaction.
Am J Physiol Heart Circ Physiol.
2010;
298
(3):H861–H873. doi: 10.1152/ajpheart.00925.2009.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
87.
Lu Y, Wu H, Li J, et al Passive and active triaxial wall mechanics in a two-layer model of porcine coronary artery.
Sci Rep.
2017;
7
(1):13911. doi: 10.1038/s41598-017-14276-1.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
88.
Ramachandra A B, Humphrey J D Biomechanical characterization of murine pulmonary arteries.
J Biomech.
2019;
84
:18–26. doi: 10.1016/j.jbiomech.2018.12.012.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
89.
Haspinger D C, Murtada S L, Niestrawska J A, et al Numerical analyses of the interrelation between extracellular smooth muscle orientation and intracellular filament overlap in the human abdominal aorta.
ZAMM.
2018;
98
(12):2198–2221. doi: 10.1002/zamm.201800113.
[
CrossRef
]
[
Google Scholar
]
90.
Millman B M The filament lattice of striated muscle.
Physiol Rev.
1998;
78
(2):359–391. doi: 10.1152/physrev.1998.78.2.359.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
91.
Milewicz D M, Trybus K M, Guo D C, et al Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections.
Arterioscler Thromb Vasc Biol.
2017;
37
(1):26–34. doi: 10.1161/ATVBAHA.116.303229.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
92.
Chen P Y, Qin L, Li G, et al Smooth muscle cell reprogramming in aortic aneurysms.
Cell Stem Cell.
2020;
26
(4):542–557. doi: 10.1016/j.stem.2020.02.013.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
93.
Fan T, Zhou Z, Fang W, et al Morphometry and hemodynamics of coronary artery aneurysms caused by atherosclerosis.
Atherosclerosis.
2019;
284
:187–193. doi: 10.1016/j.atherosclerosis.2019.03.001.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
94.
Huang X, Liu D, Yin X, et al Morphometry and hemodynamics of posterior communicating artery aneurysms: Ruptured versus unruptured.
J Biomech.
2018;
76
:35–44. doi: 10.1016/j.jbiomech.2018.05.019.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
96.
Kassab G S, Navia J A Biomechanical considerations in the design of graft: The homeostasis hypothesis.
Annu Rev Biomed Eng.
2006;
8
:499–535. doi: 10.1146/annurev.bioeng.8.010506.105023.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
97.
Murtada S I, Humphrey J D, Holzapfel G A Multiscale and multiaxial mechanics of vascular smooth muscle.
Biophys J.
2017;
113
(3):714–727. doi: 10.1016/j.bpj.2017.06.017.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
98.
Coccarelli A, Edwards D H, Aggarwal A, et al A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.
J R Soc Interface.
2018;
15
(139):20170732. doi: 10.1098/rsif.2017.0732.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]