Designing and implementing synthetic biological pattern formation remains challenging due to underlying theoretical complexity as well as the difficulty of engineering multicellular networks biochemically. Here, we introduce a cell-in-the-loop approach where living cells interact through in silico signaling, establishing a new testbed to interrogate theoretical principles when internal cell dynamics are incorporated rather than modeled. We present an easy-to-use theoretical test to predict the emergence of contrasting patterns in gene expression among laterally inhibiting cells. Guided by the theory, we experimentally demonstrate spontaneous checkerboard patterning in an optogenetic setup, where cell-to-cell signaling is emulated with light inputs calculated in silico from real-time gene expression measurements. The scheme successfully produces spontaneous, persistent checkerboard patterns for systems of sixteen patches, in quantitative agreement with theoretical predictions. Our research highlights how tools from dynamical systems theory may inform our understanding of patterning, and illustrates the potential of cell-in-the-loop for engineering synthetic multicellular systems.

中文翻译:

由于潜在的理论复杂性以及生物化学工程化多细胞网络的困难,设计和实施合成生物模式的形成仍然具有挑战性。在这里,我们介绍了一种“细胞在环”的方法,其中活细胞通过计算机信号进行交互,建立了一个新的试验台,以在整合内部细胞动力学而不是模型时询问理论原理。我们提出了一种易于使用的理论测试,以预测侧向抑制细胞之间基因表达的对比模式的出现。在该理论的指导下,我们通过实验证明了光遗传学环境中自发棋盘格图案的形成,其中,通过实时基因表达测量计算的计算机模拟光输入来模拟细胞间信号传递。该方案成功地为十六个补丁的系统生成了自发的,持久的棋盘图案,与理论预测在数量上一致。我们的研究重点介绍了动力系统理论中的工具如何可以帮助我们更好地理解图案,并阐明了细胞在回路中用于工程合成多细胞系统的潜力。