The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Feb 20; 42(2): 272–277.
PMCID: PMC8983359

Language: Chinese | English

PI3K/AKT/mTOR信号通路异常激活导致强直性脊柱炎患者的间充质干细胞自噬减弱

Hyperactivation of PI3K/AKT/mTOR signal pathway impairs TNF-α-induced autophagy in mesenchymal stem cells from patients with ankylosing spondylitis

刘 振华

南方医科大学珠江医院脊柱外科,广东 广州 510282, Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China

Find articles by 刘 振华

闵 少雄

北京大学深圳医院脊柱外科,广东 深圳 518034, Department of Orthopedics, Shenzhen Hospital, Peking University, Shenzhen 518034, China

Find articles by 闵 少雄

卢 秀仪

广 州医科大学附属第四医院皮肤科,广东 广州 510316, Department of Dermatology, Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510316, China

Find articles by 卢 秀仪

岑 水忠

南方医科大学珠江医院脊柱外科,广东 广州 510282, Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China

Find articles by 岑 水忠

陈 志鹏

中山大学孙逸仙纪念医院骨外科,广东 广州 510120, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat- sen University, Guangzhou 510120, China

Find articles by 陈 志鹏

王 涛

南方医科大学珠江医院脊柱外科,广东 广州 510282, Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China

Find articles by 王 涛

李 建君

南方医科大学珠江医院脊柱外科,广东 广州 510282, Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China

Find articles by 李 建君

曾 炜波

南方医科大学珠江医院脊柱外科,广东 广州 510282, Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China

Find articles by 曾 炜波

邱 素均

南方医科大学珠江医院脊柱外科,广东 广州 510282, Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China 南方医科大学珠江医院脊柱外科,广东 广州 510282, Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China 北京大学深圳医院脊柱外科,广东 深圳 518034, Department of Orthopedics, Shenzhen Hospital, Peking University, Shenzhen 518034, China 广 州医科大学附属第四医院皮肤科,广东 广州 510316, Department of Dermatology, Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510316, China 中山大学孙逸仙纪念医院骨外科,广东 广州 510120, Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat- sen University, Guangzhou 510120, China Number1514Age (year)28.3±9.429.7±10.5Male no. (%)11 (73.3%)11 (78.6%)HLA-B27 positive no. (%)012 (85.7%)*Disease duration (year)-4.36±3.5CRP (mg/L)4.2±1.824.1±12.7*ESR (mm/h)8.9±4.431.5±16.8*BASDAI0.98±0.815.13±1.52*

1.2. MSCs的分离、培养和鉴定

按既往报道的方法,经髂后上棘穿刺抽取患者及健康志愿者骨髓,用密度梯度离心法分离MSCs [ 13 ] 。用含10%胎牛血清(四季青)的DMEM培养液(Gibco)于25 cm 2 的培养瓶中培养,贴壁后定期换液、传代,将第4代细胞用于实验。用流式细胞学技术检测细胞的表面抗体[CD14-APC、CD29-PE、CD44-FITC、CD45-APC、CD105-FITC和HLA DR(BD)]。

1.3. 细胞增殖能力检测

将健康志愿者和患者的第4代MSCs种于96孔板上(5×10 4 /孔),用含10%胎牛血清的DMEM培养,将无细胞孔作为阴性对照。采用CCK-8试剂盒(Dojindo)检测不同时间点HDMSCs和ASMSCs的增殖情况。

1.4. TNF-α诱导自噬

将HDMSCs及ASMSCs分别种于6孔板(1×10 6 /孔),贴壁培养24 h后,实验组加入TNF- α(Sigma Aldrich,25 ng/mL)及培养液,对照组单纯加入培养液,诱导6 h后进行后续实验。

1.5. 定量PCR(qRT-PCR)

先用TRIzol(Invitrogen)按步骤提取RNA,接着用PrimeScript TM RT Master Mix(Takara)试剂盒将RNA转录为cDNA。按步骤设计并合成引物(Invitrogen)(引物序列详见 表 2 ),在LightCycler ® 480 PCR System (Roche)上进行qRT-PCR实验。选取GAPDH作为内参,目标基因Ct值以GAPDH的Ct值标准化,用2 –ΔCt 的方法计算基因的相对表达量。qRT-PCR所用引物见 表 2

表 2

qRT-PCR引物序列

Primers used for qRT-PCR

Gene Forward primer (5'-3') Reverse primer (5'-3')
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; PI3K: Phosphatidylinositol 3-kinase; AKT: Serine/threonine kinase; mTOR: Mammalian target of rapamycin kinase.
GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
PI3K TCTGATGGATATTCCCGAAAGCC CTCACCCACTGGAAGTTTTTGAT
AKT GGACAACCGCCATCCAGACT GCCAGGGACACCTCCATCTC
mTOR CCTCCATCCACCTCATCA GACGCCAAGACACAGTAG

1.6. Western blot

按步骤提取蛋白并依次定量、变性,将变性后的蛋白与SDS混合物进行电泳并转至PVDF膜(Millipore)上。将PVDF膜洗涤后封闭1 h,4 ℃下孵育一抗过夜(GAPDH、LC3B、P62、p-PI3K、PI3K、p-AKT、AKT、pmTOR、mTOR,CST),洗膜后室温孵育二抗(Santa Cruz)1.5 h。再次洗膜后加入显影液(Millipore),放入Chem Studio PLUS Motorized成像系统曝光。Image J软件测量目标蛋白灰度值,将GAPDH设为内参,目标蛋白的相对表达量=目标蛋白灰度值/GAPDH灰度值。

1.7. 绿色荧光蛋白和轻链3B融合蛋白(GFP-LC3B)分析

将MSCs种于6孔板,贴壁培养24 h后,将含有绿色荧光蛋白轻链3B的慢病毒载体(GFP LC3B,吉玛基因)加入MSCs中。再次培养24 h后,更换培养液,加入TNF-α诱导,以不加入TNF-α诱导孔为对照。转染72 h后,通过荧光显微镜观察诱导前后MSCs中GFP-LC3B的表达。自噬越强,细胞中GFP-LC3B荧光点更多更亮。用Image Pro软件计算GFP-LC3B荧光点的数量。

1.8. 统计学分析

采用SPSS 22.0统计软件进行统计学分析。两组之间比较采用独立样本 t 检验,多组之间比较用方差分析。数据以均数±标准差来表示, P < 0.05认为差异有统计学意义。

2. 结果

2.1. ASMSCs与HDMSCs具有相同的形态、表型和增殖能力

在显微镜下,HDMSCs与ASMSCs均为长梭形贴壁生长的细胞。HDMSCs与ASMSCs均持续表达CD29、CD44和CD105,但不表达CD14、CD45和HLA-DR。在1~7 d的培养过程中,HDMSCs与ASMSCs增殖能力无明显差异( 图 1 )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-2-272-1.jpg

ASMSCs与HDMSCs具有相同的形态、表型和增殖能力

ASMSCs and HDMSCs have identical morphology, phenotype and proliferation rate. A : Both HDMSCs and ASMSCs are plastic-adherent, spindle-shaped cells. B : The cells express CD29, CD44, and CD105 but not CD14, CD45, or HLA-DR. C : HDMSCs and ASMSCs have similar proliferation rate when cultured in DMEM with 10% FBS for 1-7 days.

2.2. TNF-α诱导下,ASMSCs自噬水平低于HDMSCs TNF-α诱导6 h后,ASMSCs中LC3 II/LC3 I的蛋

白表达水平明显低于HDMSCs,而P62的表达水平明显高于HDMSCs( 图 2 )。进一步通过荧光显微镜观察,我们发现自噬诱导后ASMSCs的GFP-LC3B荧光斑点明显弱于HDMSCs( 图 2 )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-2-272-2.jpg

TNF-α诱导下,ASMSCs自噬水平低于HDMSCs

ASMSCs show decreased autophagy after treatment with TNF-α. ASMSCs have a lower LC3 II/LC3 I protein expression ratio but a higher P62 protein expression than HDMSCs. Fluorescence microscopy further reveals a significantly weaker and more diffuse GFP-LC3 puncta staining in ASMSCs than in HDMSCs. * P < 0.05.

2.3. ASMSCs自噬过程中PI3K/AKT/mTOR信号通道异常激活

尽管自噬过程中ASMSCs与HDMSCs的PI3K、AKT及mTOR基因表达水平无明显差异( 图 3A ),但ASMSCs的p-PI3K/PI3K、p-AKT/AKT及p-mTOR/ mTOR蛋白表达水平明显高于HDMSCs( 图 3B )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-2-272-3.jpg

ASMSCs自噬过程中PI3K/AKT/mTOR信号通道异常激活

The PI3K/Akt-mTOR signaling pathway is hyperactivated in ASMSCs during TNF-α-induced autophagy. A : Expressions of PI3K, AKT and mTOR mRNA are comparable between HDMSCs and ASMSCs. B : Protein expressions of p-PI3K/PI3K, p-AKT/ AKT and p-mTOR/mTOR are significantly higher in ASMSCs than in HDMSCs. * P < 0.05.

2.4. 阻断PI3K/AKT/mTOR信号通路可恢复ASMSCs自噬水平

400 nmol/L的TG100713可有效阻断PI3K的磷酸化( 图 4A )。阻断PI3K磷酸化后,ASMSCs中p-AKT/ AKT、p-mTOR/mTOR、LC3 II/LC3 I及P62的表达恢复至HDMSCs水平,而GFP- LC3B荧光斑点强度也与HDMSCs相当( 图 4B )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-2-272-4.jpg

阻断PI3K/AKT/mTOR信号通路可将ASMSCs自噬水平恢复至HDMSCs的水平

Blocking PI3K/AKT/mTOR signaling pathway eliminates the difference in autophagy between ASMSCs and HDMSCs. A : TG100713 (400 nmol/L) effectively eliminates the difference in p-PI3K/PI3K expression. B : TG100713 eliminates the differences in the puncta staining (GFP-LC3B) and protein expressions (p-AKT/AKT, p-mTOR/mTOR, LC3 II/LC3 I and P62) between HDMSCs and ASMSCs. * P < 0.05 vs healthy donors.

3. 讨论

TNF-α是一种多功能细胞因子,广泛参与体内的病理生理过程,如:增殖、分化、凋亡、自噬等 [ 14 ] 。研究表明,TNF-α与AS的发病密切相关。首先,TNF-α在-238,-308,-850,-1031和rs769178位点上的基因多态性与AS的易感性密切相关 [ 15 ] ;其次,AS患者血清及骶髂关节中TNF-α水平明显升高 [ 16 , 17 ] ,且血清中TNF-α水平与AS疾病活动度成正相关 [ 18 ] ;此外,TNF-α抑制剂可有效治疗AS [ 19 ] 。但是,TNF-α参与AS发病的具体机制尚未完全明确。最近多项研究进一步指出,TNF-α可通过调控MSC的功能参与AS的发生发展。TNF-α介导ELMO1的m6A甲基化修饰可诱导AS患者MSC定向迁移 [ 20 ] ;TNF-α可通过自噬调控MSC凋亡,影响MSC的免疫调节能力 [ 21 ] 。我们前期研究表明,激活自噬可提高MSC的抑炎能力,反之亦然 [ 22 ] 。因此,我们推测TNF-α可能通过调控MSC自噬参与AS的发病。

细胞自噬与内环境稳态密切相关,自噬水平异常可诱发炎症反应并参与自身免疫性疾病的发病 [ 10 ] 。B细胞自噬增多而T细胞自噬减少与系统性红斑狼疮体内慢性炎症密切相关 [ 23 , 24 ] ;滑膜成纤维细胞自噬增多及成骨细胞/破骨细胞自噬失调参与了类风湿性关节炎的发生发展 [ 25 ] ;肌成纤维细胞自噬水平下降是系统性硬化症的重要发病机制 [ 26 ] 。在本研究中,我们发现TNF-α诱导下ASMSCs的自噬水平明显低于HDMSCs。ASMSCs自噬水平下降可导致其抑炎能力降低、体内炎症水平升高,这可能是AS慢性炎症的发病机制之一。

细胞自噬是一个复杂的病理生理过程,多种细胞因子及信号通路参与其中,PI3K/AKT/mTOR信号通路是其中最重要的调控通路之一 [ 27 , 28 ] 。PI3K/AKT/mTOR信号通路激活后,既可直接抑制自噬,又可通过调控P70S6K、AMBRA1、ULK1和BECLIN1等因子的表达抑制自噬小体的形成,负向调控细胞自噬 [ 29 , 30 ] 。本研究结果显示,在ASMSCs自噬过程中,PI3K/AKT/mTOR表达明显升高;抑制PI3K磷酸化后,AKT及mTOR的表达及ASMSCs自噬均恢复至HDMSCs水平。说明PI3K/AKT/mTOR信号通路异常激活是导致ASMSCs自噬减弱的关键机制。

本研究中,我们发现TNF-α诱导下,PI3K/AKT/ mTOR信号通路异常激活是导致ASMSCs自噬减弱的关键。ASMSCs自噬减弱可导致其抑炎能力下降并诱发或加重AS患者体内慢性炎症。但是,PI3K/AKT/ mTOR信号通路异常激活的关键分子究竟是什么?在AS患者体内是否同样存在这种自噬减弱的情况?上述问题仍有待进一步研究。

Biography

刘振华,博士,主治医师,E-mail: moc.qq@969474971

Funding Statement

广东省自然科学基金(2018A0303130258)

References

1. Robinson PC, van der Linden S, Khan MA, et al. Axial spondyloarthritis: concept, construct, classification and implications for therapy. Nat Rev Rheumatol. 2021; 17 (2):109–18. doi: 10.1038/s41584-020-00552-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Su J, Wang R, Duan X, et al. Clinical characteristics of axial spondyloarthritis patients in China: results from ChinaSpA, the Chinese Spondyloarthritis Registry[J]. Clin Exp Rheumatol, 2021: 2021Apr23 Online ahead of print.
3. Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017; 390 (10089):73–84. doi: 10.1016/S0140-6736(16)31591-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008; 8 (9):726–36. doi: 10.1038/nri2395. [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, et al. Role of stem cells in pathophysiology and therapy of spondyloarthropathies-new therapeutic possibilities? Int J Mol Sci. 2017; 19 (1):80. doi: 10.3390/ijms19010080. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Xie ZY, Wang P, Li YX, et al. Imbalance between bone morphogenetic protein 2 and noggin induces abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis. Arthritis Rheumatol. 2016; 68 (2):430–40. doi: 10.1002/art.39433. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Liu WJ, Wang P, Xie ZY, et al. Abnormal inhibition of osteoclastogenesis by mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing spondylitis. Cell Death Dis. 2019; 10 (3):188. doi: 10.1038/s41419-019-1448-x. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Sieper J, Deodhar A, Marzo-Ortega H, et al. Secukinumab efficacy in anti-TNF-naive and anti-TNF-experienced subjects with active ankylosing spondylitis: results from the MEASURE 2 Study. Ann Rheum Dis. 2017; 76 (3):571–92. doi: 10.1136/annrheumdis-2016-210023. [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018; 19 (6):349–64. doi: 10.1038/s41580-018-0003-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Rockel JS, Kapoor M. Erratum: Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol. 2017; 13 (3):193. [ PubMed ] [ Google Scholar ]
11. Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: interactions and clinical implications. Cytokine Growth Factor Rev. 2018; 43 :38–46. doi: 10.1016/j.cytogfr.2018.07.001. [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Linden SVD, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. Arthritis Rheum. 1984; 27 (4):361–8. doi: 10.1002/art.1780270401. [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Liu ZH, Gao LB, Wang P, et al. TNF-αInduced the enhanced apoptosis of mesenchymal stem cells in ankylosing spondylitis by overexpressing TRAIL-R2. Stem Cells Int. 2017; 2017 :1–14. [ PMC free article ] [ PubMed ] [ Google Scholar ]
14. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016; 12 (1):49–62. doi: 10.1038/nrrheum.2015.169. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Hu N, Chen X, Wang S, Yuan G, Wang Q, Shu H, Sun H. The association of polymorphisms in TNF and ankylosing spondylitis in common population: a meta-analysis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2021; 30 (6):1402–1410. doi: 10.1007/s00586-021-06845-w. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Francois RJ. Immunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis: detection of tumour necrosis factor in two patients with early disease and transforming growth factor in three more advanced cases. Ann Rheum Dis. 2006; 65 (6):713–20. doi: 10.1136/ard.2005.037465. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Braun J, Bollow M, Neure L, et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 1995; 38 (4):499–505. doi: 10.1002/art.1780380407. [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Lange U, Teichmann J, Stracke H. Correlation between plasma TNF-alpha, IGF-1, biochemical markers of bone metabolism, markers of inflammation/disease activity, and clinical manifestations in ankylosing spondylitis. Eur J Med Res. 2000; 5 (12):507–11. [ PubMed ] [ Google Scholar ]
19. Ward MM, Deodhar A, Gensler LS, et al. 2019 update of the American college of rheumatology/spondylitis association of America/spondyloarthritis research and treatment network recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Care Res. 2019; 71 (10):1285–99. doi: 10.1002/acr.24025. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Xie Z, Yu W, Zheng G, et al. TNF-alpha-mediated m(6)A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat Commun. 2021; 12 (1):5373. doi: 10.1038/s41467-021-25710-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Yang R, Ouyang Y, Li WP, et al. Autophagy plays a protective role in tumor necrosis factor-α-induced apoptosis of bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 2016; 25 (10):788–97. doi: 10.1089/scd.2015.0387. [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Gao LB, Cen SZ, Wang P, et al. Autophagy improves the immunosuppression of CD4 + T cells by mesenchymal stem cells through transforming growth factor-β1. Stem Cells Transl Med. 2016; 5 (11):1496–505. doi: 10.5966/sctm.2015-0420. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Clarke AJ, Ellinghaus U, Cortini A, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis. 2015; 74 (5):912–20. doi: 10.1136/annrheumdis-2013-204343. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. Alessandri C, Barbati C, Vacirca D, et al. T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J. 2012; 26 (11):4722–32. doi: 10.1096/fj.12-206060. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. Vomero M, Barbati C, Colasanti T, et al. Autophagy and rheumatoid arthritis: current knowledges and future perspectives. Front Immunol. 2018; 9 :1577. doi: 10.3389/fimmu.2018.01577. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Ghavami S, Cunnington RH, Gupta S, et al. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 2015; 6 (3):e1696. doi: 10.1038/cddis.2015.36. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, et al. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal. 2014; 26 (12):2694–701. doi: 10.1016/j.cellsig.2014.08.019. [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. Kim KH, Lee MS. Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014; 10 (6):322–37. doi: 10.1038/nrendo.2014.35. [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. Xu ZR, Han X, Ou DM, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol. 2020; 104 (2):575–87. doi: 10.1007/s00253-019-10257-8. [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. Yang L, Wu Y, Lin S, et al. sPLA2-IB and PLA2R mediate insufficient autophagy and contribute to podocyte injury in idiopathic membranous nephropathy by activation of the p38MAPK/mTOR/ULK1(ser757) signaling pathway. FASEBJ. 2021; 35 (2):e21170. [ PubMed ] [ Google Scholar ]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University