1.
Ko C Y, Kim S B, Kim J K, et al Biomechanical features of level walking by transtibial amputees wearing prosthetic feet with and without adaptive ankles.
J Mech Sci Technol.
2016;
30
(6):2907–2914. doi: 10.1007/s12206-016-0550-6.
[
CrossRef
]
[
Google Scholar
]
2.
Raschke S U, Orendurff M S, Mattie J L, et al Biomechanical characteristics, patient preference and activity level with different prosthetic feet: A randomized double blind trial with laboratory and community testing.
J Biomech.
2015;
48
(1):146–152. doi: 10.1016/j.jbiomech.2014.10.002.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
Arifin N, Abu Osman N A, Ali S, et al Evaluation of postural steadiness in below-knee amputees when wearing different prosthetic feet during various sensory conditions using the Biodex
®
Stability System
.
Proc Inst Mech Eng H.
2015;
229
(7):491–498. doi: 10.1177/0954411915587595.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Graham L E, Datta D, Heller B, et al A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees.
Arch Phys Med Rehabil.
2007;
88
(6):801–806. doi: 10.1016/j.apmr.2007.02.028.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Johansson J L, Sherrill D M, Riley P O, et al A clinical comparison of variable-damping and mechanically passive prosthetic knee devices.
Am J Phys Med Rehabil.
2005;
84
(8):563–575. doi: 10.1097/01.phm.0000174665.74933.0b.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Yilmaz A, Orhanli T. A test platform design for testing knee prostheses// 2014 18th National Biomedical Engineering Meeting. Istanbul: IEEE, 2014: 1-4.
7.
Maqbool H F, Husman M A, Awad M I, et al A real-time gait event detection for lower limb prosthesis control and evaluation.
IEEE Trans Neural Syst Rehabil Eng.
2017;
25
(9):1500–1509. doi: 10.1109/TNSRE.2016.2636367.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Yunardi R T, Firdaus A A, Agustin E I. Implementation of motion capture system for trajectory planning of leg swing simulator// 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology. Surabaya: IEEE, 2017: 11-16.
9.
焦伟. 假肢膝关节测试平台模糊PID控制系统研究. 南京: 东南大学, 2015.
10.
Richter H, Simon D, Smith W A, et al Dynamic modeling, parameter estimation and control of a leg prosthesis test robot.
Appl Math Model.
2015;
39
(2):559–573. doi: 10.1016/j.apm.2014.06.006.
[
CrossRef
]
[
Google Scholar
]
11.
Prakash C, Mishra U, Jain M, et al. Automated kinematic analysis using holistic based human gait motion for biomedical applications// 2018 8th International Conference on Cloud Computing, Data Science & Engineering. Noida: IEEE, 2018: 700-706.
12.
Sun Ningping, Sakai Y. New approaches to human gait simulation using motion sensors// 2017 31st IEEE International Conference on Advanced Information Networking and Applications Workshops. Taipei: IEEE, 2017: 126-131.
13.
Park S E, Ho Y J, Moon Y, et al. Analysis of gait pattern during stair walk for improvement of gait training robot// 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Seogwipo: IEEE, 2017: 1905-1908.
14.
Babaee M, Li Linwei, Rigoll G. Gait recognition from incomplete gait cycle// The 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018: 768-772.
15.
Wang Fei, Kim K, Wen Shiguang, et al. Study of gait symmetry quantification and its application to intelligent prosthetic leg development// 2011 IEEE International Conference on Robotics and Biomimetics. Karon Beach: IEEE, 2011: 1361-1366.
16.
曹武警, 魏小东, 赵伟亮, 等 基于生理步态的智能膝关节结构设计及训练方法研究
生物医学工程学杂志
2018;
35
(5):75–81.
[
Google Scholar
]