The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Sichuan Da Xue Xue Bao Yi Xue Ban. 2023 May 20; 54(3): 455–461.
PMCID: PMC10475431

Language: Chinese | English

CD47在肿瘤免疫逃逸中的作用及靶向治疗策略研究进展

Latest Findings on the Role of CD47 in Tumor Immune Evasion and Related Targeted Therapies

晓亮 揭

国家癌症中心/中国医学科学院肿瘤医院 分子肿瘤学国家重点实验室 (北京 100021), State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China

Find articles by 晓亮 揭

阳阳 孔

国家癌症中心/中国医学科学院肿瘤医院 分子肿瘤学国家重点实验室 (北京 100021), State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China

Find articles by 阳阳 孔

光飚 周

国家癌症中心/中国医学科学院肿瘤医院 分子肿瘤学国家重点实验室 (北京 100021), State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China 国家癌症中心/中国医学科学院肿瘤医院 分子肿瘤学国家重点实验室 (北京 100021), State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China

E-mail: nc.ca.smacic@uohzbg *    *    *

利益冲突 所有作者均声明不存在利益冲突

Biography

周光飚,国家杰出青年科学基金获得者,中国医学科学院肿瘤医院分子肿瘤学国家重点实验室副主任,中国医学科学院北京协和医学院长聘教授。主要研究肺癌发生机理,包括利用多组学技术,在环境-基因互作、肿瘤微环境、肿瘤免疫与代谢层面,剖析机体内、外环境因素作用下肺癌的发生机理。在国际高水平期刊发表论文120篇,部分论文被F1000、Biocentury推荐。2009年起任中国工程院院刊 Front Med 杂志执行副主编

Funding Statement

国家重点研发计划项目(No. 2020YFA0803300、No. 2022YFA1103900),国家自然科学基金重点项目(No. 81830093)和中国医学科学院知识创新工程人才引进与培养项目(No. 2022-RC310-05)资助

References

1. BAXI S, YANG A, GENNARELLI R L, et al Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ. 2018; 360 :k793. doi: 10.1136/bmj.k793. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. LIU X, KWON H, LI Z, et al Is CD47 an innate immune checkpoint for tumor evasion? J Hematol Oncol. 2017; 10 (1):12. doi: 10.1186/s13045-016-0381-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. JIANG Z, SUN H, YU J, et al Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 2021; 14 (1):180. doi: 10.1186/s13045-021-01197-w. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. ADVANI R, FLINN I, POPPLEWELL L, et al CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. N Engl J Med. 2018; 379 (18):1711–1721. doi: 10.1056/NEJMoa1807315. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. SIKIC B I, LAKHANI N, PATNAIK A, et al First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. J Clin Oncol. 2019; 37 (12):946–953. doi: 10.1200/JCO.18.02018.Epub2019Feb27. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. LEClAIR P, LIU C C, MONAJEMI M, et al CD47-ligation induced cell death in T-acute lymphoblastic leukemia. Cell Death Dis. 2018; 9 (5):544. doi: 10.1038/s41419-018-0601-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. HU T, LIU H, LIANG Z, et al Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis. Theranostics. 2020; 10 (9):4056–4072. doi: 10.7150/thno.40860. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. PELUSO M O, ADAM A, ARMET C M, et al The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a. J Immunother Cancer. 2020; 8 (1):e000413. doi: 10.1136/jitc-2019-000413. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. FENARTI G, VILLANUEVA N, GRIFFITH M, et al Structure of the human marker of self 5-transmembrane receptor CD47. Nat Commun. 2021; 12 (1):5218. doi: 10.1038/s41467-021-25475-w. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. DEHMANI S, NERR V, NEEL M, et al SIRPγ-CD47 interaction positively regulates the activation of human T cells in situation of chronic stimulation. Front Immunol. 2021; 12 :732530. doi: 10.3389/fimmu.2021.732530. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. YAMASHIRO Y, THANG B Q, RAMIREZ K, et al Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling. Proc Natl Acad Sci U S A. 2020; 117 (18):9896–9905. doi: 10.1073/pnas.1919702117. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. KUMAR R, MICKAEL C, KASSA B, et al TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nat Commun. 2017; 8 :15494. doi: 10.1038/ncomms15494. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. JIA X, YAN B, TIAN X, et al CD47/SIRPα pathway mediates cancer immune escape and immunotherapy. Int J Biol Sci. 2021; 17 (13):3281–3287. doi: 10.7150/ijbs.60782. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. OZANIAK A, SMETANOVA J, BARTOLINI R, et al A novel anti-CD47-targeted blockade promotes immune activation in human soft tissue sarcoma but does not potentiate anti-PD-1 blockade. J Cancer Res Clin Oncol. 2022 doi: 10.1007/s00432-022-04292-8. [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. YANG K, XU J, LIU Q, et al Expression and significance of CD47, PD1 and PDL1 in T-cell acute lymphoblastic lymphoma/leukemia. Pathol Res Pract. 2019; 215 (2):265–271. doi: 10.1016/j.prp.2018.10.021. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. CANDAS D, XIE B, HUANG J, et al Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun. 2020; 11 (1):4591. doi: 10.1038/s41467-020-18245-7. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. MOHANTY S, YERNENI K, THERUVATH J L, et al Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis. 2019; 10 (2):36. doi: 10.1038/s41419-018-1285-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. WU L, YU G T, DENG W W, et al Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. Oncoimmunology. 2018; 7 (4):e1397248. doi: 10.1080/2162402X.2017.1397248. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. LIU L, ZHANG L, YANG L, et al Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front Immunol. 2017; 8 :404. doi: 10.3389/fimmu.2017.00404. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. RUSS A, HUA A B, MONTFORT W R, et al Blocking "don't eat me" signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018; 32 (6):480–489. doi: 10.1016/j.blre.2018.04.005. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. VAETEEWOOTTACHARN K, KARIYA R, POTHIPAN P, et al Attenuation of CD47-SIRPα signal in cholangiocarcinoma potentiates tumor-associated macrophage-mediated phagocytosis and suppresses intrahepatic metastasis. Transl Oncol. 2019; 12 (2):217–225. doi: 10.1016/j.tranon.2018.10.007. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. ABE H, SAITO R, ICHIMURA T, et al CD47 expression in Epstein-Barr virus-associated gastric carcinoma: coexistence with tumor immunity lowering the ratio of CD8 + /Foxp3 + T cells. Virchows Arch. 2018; 472 (4):643–651. doi: 10.1007/s00428-018-2332-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. SHI M, GU Y, JIN K, et al CD47 expression in gastric cancer clinical correlates and association with macrophage infiltration. Cancer Immunol Immunother. 2021; 70 (7):1831–1840. doi: 10.1007/s00262-020-02806-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. YU L, DING Y, WAN T, et al Significance of CD47 and its association with tumor immune microenvironment heterogeneity in ovarian cancer. Front Immunol. 2021; 12 :768115. doi: 10.3389/fimmu.2021.768115. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. HUANG C Y, YE Z H, HUANG M Y, et al Regulation of CD47 expression in cancer cells. Transl Oncol. 2020; 13 (12):100862. doi: 10.1016/j.tranon.2020.100862. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. DIZMAN N, BUCHBINDER E I Cancer therapy targeting CD47/SIRPα Cancers (Basel) 2021; 13 (24):6229. doi: 10.3390/cancers13246229. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. GONG J, JI Y, LIU X, et al Mithramycin suppresses tumor growth by regulating CD47 and PD-L1 expression. Biochem Pharmacol. 2022; 197 :114894. doi: 10.1016/j.bcp.2021.114894. [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. WANG Z, LI B, LI S, et al Metabolic control of CD47 expression through LAT2-mediated amino acid uptake promotes tumor immune evasion. Nat Commun. 2022; 13 (1):6308. doi: 10.1038/s41467-022-34064-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. SAMANTA D, PARK Y, NI X, et al Chemotherapy induces enrichment of CD47 + /CD73 + /PDL1 + immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci U S A. 2018; 115 (6):E1239–E1248. doi: 10.1073/pnas.1718197115. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. BETANCUR P A, ABRAHAM B J, YIU Y Y, et al A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun. 2017; 8 :14802. doi: 10.1038/ncomms14802. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. LIU F, DAI M, XU Q, et al SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis. Oncogene. 2018; 37 (18):2394–2409. doi: 10.1038/s41388-017-0119-6. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
32. GOWDA P, PATRICK S, SINGH A, et al Mutant isocitrate dehydrogenase 1 disrupts PKM2-β-Catenin-BRG1 transcriptional network-driven CD47 expression. Mol Cell Biol. 2018; 38 (9):e00001–18. doi: 10.1128/MCB.00001-18. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. LI L, GONG Y, TANG J, et al ZBTB28 inhibits breast cancer by activating IFNAR and dual blocking CD24 and CD47 to enhance macrophages phagocytosis. Cell Mol Life Sci. 2022; 79 (2):83. doi: 10.1007/s00018-021-04124-x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. LOGTENBERG M E W, JANSEN J H M, RAABEN M, et al Glutaminyl cyclase is an enzymatic modifier of the CD47-SIRPα axis and a target for cancer immunotherapy. Nat Med. 2019; 25 (4):612–619. doi: 10.1038/s41591-019-0356-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. YAO H, XU J Regulation of cancer immune checkpoint: mono- and poly-ubiquitination: tags for fate. Adv Exp Med Biol. 2020; 1248 :295–324. doi: 10.1007/978-981-15-3266-5_13. [ PubMed ] [ CrossRef ] [ Google Scholar ]
36. ESMAILZADEH S, MANSOORI B, MOHAMMADI A, et al Regulatory roles of micro-RNAs in T cell autoimmunity. Immunol Invest. 2017; 46 (8):864–879. doi: 10.1080/08820139.2017.1373901. [ PubMed ] [ CrossRef ] [ Google Scholar ]
37. RUPAIMOOLE R, SLACK F J MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017; 16 (3):203–222. doi: 10.1038/nrd.2016.246. [ PubMed ] [ CrossRef ] [ Google Scholar ]
38. HUANG W, WANG W T, FANG K, et al MIR-708 promotes phagocytosis to eradicate T-ALL cells by targeting CD47. Mol Cancer. 2018; 17 (1):12. doi: 10.1186/s12943-018-0768-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
39. MOAZZENI H, NAJAFI A, KHANI M Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Cell Probes. 2017; 34 :45–52. doi: 10.1016/j.mcp.2017.05.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. BEIZAVI Z, GHEIBIHAYAT S M, MOGHADASIAN H, et al The regulation of CD47-SIRPα signaling axis by microRNAs in combination with conventional cytotoxic drugs together with the help of nano-delivery: a choice for therapy? Mol Biol Rep. 2021; 48 (7):5707–5722. doi: 10.1007/s11033-021-06547-y. [ PubMed ] [ CrossRef ] [ Google Scholar ]
41. XI Q, CHEN Y, YANG G Z, et al miR-128 regulates tumor cell CD47 expression and promotes anti-tumor immunity in pancreatic cancer. Front Immunol. 2020; 11 :890. doi: 10.3389/fimmu.2020.00890. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
42. HAYAT S M G, BIANCONI V, PIRRO M, et al CD47: role in the immune system and application to cancer therapy. Cell Oncol (Dordr) 2020; 43 (1):19–30. doi: 10.1007/s13402-019-00469-5. [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. KAUDER S E, KUO T C, HARRABI O, et al ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS One. 2018; 13 (8):e0201832. doi: 10.1371/journal.pone.0201832. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
44. YU J, SONG Y, TIAN W How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol. 2020; 13 (1):45. doi: 10.1186/s13045-020-00876-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
45. QU T, ZHONG T, PANG X, et al Ligufalimab, a novel anti-CD47 antibody with no hemagglutination demonstrates both monotherapy and combo antitumor activity. J Immunother Cancer. 2022; 10 (11):e005517. doi: 10.1136/jitc-2022-005517. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
46. XU Z, GAO J, YAO J, et al Preclinical efficacy and toxicity studies of a highly specific chimeric anti-CD47 antibody. FEBS Open Bio. 2021; 11 (3):813–825. doi: 10.1002/2211-5463.13084. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. KÜLEY-BAGHERI Y, KREUZER K A, MONSEF I, et al Effects of all-trans retinoic acid (ATRA) in addition to chemotherapy for adults with acute myeloid leukaemia (AML) (non-acute promyelocytic leukaemia (non-APL)) Cochrane Database Syst Rev. 2018; 8 (8):CD011960. doi: 10.1002/14651858.CD011960.pub2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
48. ANSELL S M, MARIS M B, LESOKHIN A M, et al Phase Ⅰ study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2021; 27 (8):2190–2199. doi: 10.1158/1078-0432.CCR-20-3706. [ PubMed ] [ CrossRef ] [ Google Scholar ]
49. PETROVA P S, VILLER N N, WONG M, et al TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res. 2017; 23 (4):1068–1079. doi: 10.1158/1078-0432.CCR-16-1700. [ PubMed ] [ CrossRef ] [ Google Scholar ]
50. PURO R J, BOUCHLAKA M N, HIEBSCH R R, et al Development of AO-176, a Next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 2020; 19 (3):835–846. doi: 10.1158/1535-7163.MCT-19-1079. [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)