相关文章推荐
帅气的夕阳  ·  LyScript ...·  1 年前    · 
满身肌肉的海豚  ·  Android ...·  2 年前    · 
YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137 Citation: YANG Huanhuan, CAO Xiangyu, GAO Jun, et al . Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars , 2021, 10(2): 206–219. doi: 10.12000/JR20137 YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137 Citation: YANG Huanhuan, CAO Xiangyu, GAO Jun, et al . Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars , 2021, 10(2): 206–219. doi: 10.12000/JR20137
基金项目: 国家自然科学基金(61671464, 61701523, 61801508),陕西省自然科学基础研究计划(2019JQ-103, 2020JM-350),陕西省青年人才托举计划(20200108),博士后创新人才支持计划(BX20180375),中国博士后科学基金面上项目(2019M653960)
作者简介:

杨欢欢(1989–),男,河南驻马店人,博士后,副教授、硕士生导师。空军工程大学与清华大学联合培养博士生,2016年获博士学位,现担任空军工程大学信息与导航学院副教授。主要研究方向为相控阵天线、新型天线设计、人工电磁结构等,目前已发表论文50多篇。E-mail: jianye8901@126.com

曹祥玉(1964–),女,河南南阳人,教授、博士生导师。1999年在空军工程大学获博士学位,现担任空军工程大学信息与导航学院教授。主要研究方向为天线与电磁兼容、人工电磁材料、计算电磁学等,目前已发表论文300多篇。E-mail: xiangyucaokdy@163.com

高 军(1962–),男,青海西宁人,教授、硕士生导师。1987年在空军工程大学获硕士学位,现担任空军工程大学信息与导航学院教授。主要研究方向为电磁超材料及其应用、高增益天线等,目前已发表论文100多篇。E-mail: gjgj9694@sina.com

李 桐(1988–),女,陕西西安人,博士后,副教授。2015年获西安电子科技大学博士学位,现担任空军工程大学信息与导航学院副教授。主要研究方向为可重构天线、可重构超表面、天线RCS减缩技术等。E-mail: tongli8811@sina.com

李思佳(1987–),男,陕西西安人,博士后,副教授、硕士生导师。2015年获空军工程大学博士学位,现担任空军工程大学信息与导航学院副教授。主要研究方向为人工电磁结构、天线RCS减缩技术等。E-mail: lsj051@126.com

丛丽丽(1991–),女,山东文登人,博士,讲师。2015年获空军工程大学博士学位,现担任空军工程大学信息与导航学院讲师。主要研究方向为天线RCS减缩技术、新型电磁超表面等

通讯作者: 杨欢欢 jianye8901@126.com 曹祥玉 xiangyucaokdy@163.com 责任主编:李廉林 Corresponding Editor: LI Lianlin

中图分类号: TN82

Funds: The National Natural Science Foundation of China (61671464, 61701523, 61801508), The Natural Science Basic Research Program of Shaanxi Province (2019JQ-103, 2020JM-350), Young Talents Support Program of Shaanxi Province (20200108), Postdoctoral Innovative Talents Support Program of China (BX20180375), Postdoctoral Science Foundation of China (2019M653960)
More Information
Corresponding author: YANG Huanhuan, jianye8901@126.com ; CAO Xiangyu, xiangyucaokdy@163.com
可重构电磁超表面是电磁超表面领域广受关注的热点方向。将可控器件/材料引入超表面设计,可重构超表面的电磁调控性能可以实时灵活动态控制。这极大丰富了超表面的功能,有力推动了超表面由理论设计向工程应用突破。近年来该团队持续关注电磁超表面的最新发展,围绕微波频段的可重构超表面,从理论、技术与应用3个层面开展探索研究。该文首先梳理了国内外在该领域的研究历程,然后从可重构超表面对电磁波的幅度、相位和极化特性调控及其应用等方面着手,综述了该团队在该领域的研究成果,并给出对未来工作的展望。

电磁超表面 /  可重构 /  电磁调控 /  天线 / Abstract: Recently, reconfigurable metasurfaces have attracted intense attention in the field of electromagnetic metasurfaces. Compared with other metasurfaces, reconfigurable metasurfaces that uses steerable devices or materials to control the electromagnetic wave in real time are more versatile and show great promise in engineering applications. Our team has continuously explored advances of reconfigurable metasurfaces and also studied the microwave region from the perspectives of theory, technique and applications. This study reviews the research history of reconfigurable metasurfaces and summarizes some of our previous works, including a study on the amplitude, phase and polarization modulation of electromagnetic waves and their applications. Finally, the study discusses future challenges and possibilities for reconfigurable metasurfaces.

Key words: Electromagnetic metasurface /  Reconfigurable /  Electromagnetic control /  Antenna /  Vortex beam  参数集总元件功能材料PIN二极管压控/变容二极管射频MEMS液晶石墨烯砷化镓 技术成熟度++00––偏置复杂度––+0+控制数字(1 V)模拟(0~30 V)数字(60 V)模拟模拟模拟成本++000–损耗(微波)––+–––功耗–++0+速度+(ns)+(ns)0(ms)–+线性度0–+0–可用度商用商用多数需定制特殊设备 注:+:好;0:中;–:差。 杨欢欢, 杨帆, 许慎恒, 等. Ku波段编码式电控超薄周期单元设计与验证[J]. 物理学报, 2016, 65(5): 054102. doi: 10.7498/aps.65.054102

YANG Huanhuan, YANG Fan, XU Shenheng, et al . Design and verification of an electronically controllable ultrathin coding periodic element in Ku band[J]. Acta Physica Sinica , 2016, 65(5): 054102. doi: 10.7498/aps.65.054102 CHEN Weiting, YANG Kuangyu, WANG C M, et al . High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters , 2014, 14(1): 225–230. doi: 10.1021/nl403811d 周仕浩, 房欣宇, 李猛猛, 等. S/X双频带吸波实时可调的吸波器[J]. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606

ZHOU Shihao, FANG Xinyu, LI Mengmeng, et al . S/X dual-band real-time modulated frequency selective surface based absorber[J]. Acta Physica Sinica , 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606 DING Yuxuan, LI Mengyao, SU Jianxun, et al . Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch[J]. IEEE Transactions on Antennas and Propagation , 2020, . doi: 10.1109/TAP.2020.3026889 LI You, LI Huangyan, WANG Yunwen, et al . A novel switchable absorber/linear converter based on active metasurface and its application[J]. IEEE Transactions on Antennas and Propagation , 2020, 68(11): 7688–7693. doi: 10.1109/TAP.2020.2980301 YANG Huanhuan, YANG Fan, XU Shenheng, et al . A 1-bit multi-polarization reflectarray element for reconfigurable large-aperture antennas[J]. IEEE Antennas and Wireless Propagation Letters , 2017, 16: 581–584. doi: 10.1109/LAWP.2016.2590478 SIEVENPIPER D F, SCHAFFNER J H, SONG H J, et al . Two-dimensional beam steering using an electrically tunable impedance surface[J]. IEEE Transactions on Antennas and Propagation , 2003, 51(10): 2713–2722. doi: 10.1109/TAP.2003.817558 HU W, ISMAIL M Y, CAHILL R, et al. Electronically reconfigurable monopulse reflectarray antenna with liquid crystal substrate[C]. The 2nd European Conference on Antennas and Propagation, Edinburgh, UK, 2007. LUO Xinyao, GUO Wenlong, CHEN Ke, et al . Active cylindrical metasurface with spatial reconfigurability for tunable backward scattering reduction[J]. IEEE Transactions on Antennas and Propagation , 2020, in press. doi: 10.1109/TAP.2020.3037728 杨帆, 许慎恒, 刘骁, 等. 基于界面电磁学的新型相控阵天线[J]. 电波科学学报, 2018, 33(3): 256–265. doi: 10.13443/j.cjors.2018052401

YANG Fan, XU Shenheng, LIU Xiao, et al . Novel phased array antennas based on surface electromagnetics[J]. Chinese Journal of Radio Science , 2018, 33(3): 256–265. doi: 10.13443/j.cjors.2018052401 YANG Xue, XU Shenheng, YANG Fan, et al . A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements[J]. IEEE Transactions on Antennas and Propagation , 2017, 65(8): 3959–3966. doi: 10.1109/TAP.2017.2708079 YANG Xue, XU Shenheng, YANG Fan, et al . A mechanically reconfigurable reflectarray with slotted patches of tunable height[J]. IEEE Antennas and Wireless Propagation Letters , 2018, 17(4): 555–558. doi: 10.1109/LAWP.2018.2802701 YANG Huanhuan, YANG Fan, XU Shenheng, et al . A 1-bit 10×10 reconfigurable reflectarray antenna: Design, optimization, and experiment[J]. IEEE Transactions on Antennas and Propagation , 2016, 64(6): 2246–2254. doi: 10.1109/TAP.2016.2550178 LI Lianlin, SHUANG Ya, MA Qian, et al . Intelligent metasurface imager and recognizer[J]. Light : Science & Applications , 2019, 8: 97. LI Lianlin, CUI Tiejun, JI Wei, et al . Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications , 2017, 8: 197. doi: 10.1038/s41467-017-00164-9 WANG Ling, YANG Yang, LI Shufang, et al . Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal , 2020, 12(3): 4600712. YANG Huanhuan, CAO Xiangyu, YANG Fan, et al . A programmable metasurface with dynamic polarization, scattering and focusing control[J]. Scientific Reports , 2016, 6: 35692. doi: 10.1038/srep35692 CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light : Science & Applications , 2016, 5: e16172. ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al . Space-time-coding digital metasurfaces[J]. Nature Communications , 2018, 9: 4334. doi: 10.1038/s41467-018-06802-0 LUO Zhangjie, WANG Qiang, ZHANG Xinge, et al . Intensity‐dependent metasurface with digitally reconfigurable distribution of nonlinearity[J]. Advanced Optical Materials , 2019, 7(19): 1900792. doi: 10.1002/adom.201900792 WAN Xiang, ZHANG Qian, CHEN Tianyi, et al . Multichannel direct transmissions of near-field information[J]. Light : Science & Applications , 2019, 8: 60. DAI Junyan, TANG Wankai, ZHAO Jie, et al . Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies , 2019, 4(7): 1900044. doi: 10.1002/admt.201900044 MA Qian, BAI Guodong, JING Hongbo, et al . Smart metasurface with self-adaptively reprogrammable functions[J]. Light : Science & Applications , 2019, 8: 98. DÍAZ-RUBIO A, TORRENT D, CARBONELL J, et al . Extraordinary absorption by a thin dielectric slab backed with a metasurface[J]. Physical Review B , 2014, 89(24): 245123. doi: 10.1103/PhysRevB.89.245123 杨欢欢. 新型电磁表面及其可重构阵列天线应用研究[D]. [博士论文], 空军工程大学, 2016.

YANG Huanhuan. Research on novel electromagnetic surface and reconfigurable reflectarrays[D]. [Ph.D. dissertation], Air Force Engineering University, 2016. HUM S V and PERRUISSEAU-CARRIER J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review[J]. IEEE Transactions on Antennas and Propagation , 2014, 62(1): 183–198. doi: 10.1109/TAP.2013.2287296 AL-NUAIMI M K T, HE Yejun, and HONG Wei. Design of 1-bit coding engineered reflectors for EM-wave shaping and RCS modifications[J]. IEEE Access , 2018, 6: 75422–75428. doi: 10.1109/ACCESS.2018.2883721 VENNERI F, COSTANZO S, and DI MASSA G. Design and validation of a reconfigurable single varactor-tuned reflectarray[J]. IEEE Transactions on Antennas and Propagation , 2013, 61(2): 635–645. doi: 10.1109/TAP.2012.2226229 范小龙. 基于MEMS开关的有源可重构频率选择表面的研究与设计[D]. [硕士论文], 南京理工大学, 2014.

FAN Xiaolong. Reseach and design of active reconfigurable frequency selective surface based on MEMS switches[D]. [Master dissertation], Nanjing University of Science and Technology, 2014. OLOUMI D, MOGHADAS H, and MOUSAVI P. Dual-band orthogonally-polarized slotted-Lozenge reflective unit cell tuned by MEMS varactor[C]. The 2012 IEEE International Symposium on Antennas and Propagation, Chicago, USA, 2012. HUANG Xianjun, ZHANG Xiao, HU Zhirun, et al . Design of broadband and tunable terahertz absorbers based on graphene metasurface: Equivalent circuit model approach[J]. IET Microwaves , Antennas & Propagation , 2015, 9(4): 307–312. doi: 10.1049/iet-map.2014.0152 TORABI E S, FALLAHI A, and YAHAGHI A. Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption[J]. IEEE Transactions on Antennas and Propagation , 2017, 65(3): 1464–1467. doi: 10.1109/TAP.2016.2647580 ZENG Chao, LIU Xueming, and WANG Guoxi. Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics[J]. Scientific Reports , 2014, 4: 5763. SAVO S, SHREKENHAMER D, and PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials , 2014, 2(3): 275–279. doi: 10.1002/adom.201300384 VASIĆ B, ISIĆ G, BECCHERELLI R, et al . Tunable beam steering at terahertz frequencies using reconfigurable metasurfaces coupled with liquid crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics , 2020, 26(5): 7701609. 杨欢欢, 曹祥玉, 高军, 等. 基于电磁谐振分离的宽带低雷达截面超材料吸波体[J]. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101

YANG Huanhuan, CAO Xiangyu, GAO Jun, et al . Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation[J]. Acta Physica Sinica , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101 LANDY N I, SAJUYIGBE S, MOCK J J, et al . Perfect metamaterial absorber[J]. Physical Review Letters , 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402 马嘉俊. 基于分形人工电磁材料吸波特性的阵列天线隐身技术研究[D]. 空军工程大学, 2014.

MA Jiajun. Radar cross section reduction of antenna array based on the absorption of fractal metamaterial[D]. Air Force Engineering University, 2014. ZHANG Guowen, GAO Jun, CAO Xiangyu, et al . An ultra-thin low-frequency tunable metamaterial absorber based on lumped element[J]. Radioengineering , 2019, 28(3): 579–584. CARRASCO E, BARBA M, and ENCINAR J A. X-band reflectarray antenna with switching-beam using PIN diodes and gathered elements[J]. IEEE Transactions on Antennas and Propagation , 2012, 60(12): 5700–5708. doi: 10.1109/TAP.2012.2208612 MONTORI S, CACCIAMANI F, GATTI R V, et al . A transportable reflectarray antenna for satellite Ku-band emergency communications[J]. IEEE Transactions on Antennas and Propagation , 2015, 63(4): 1393–1407. doi: 10.1109/TAP.2015.2398128 YANG Huanhuan, YANG Fan, CAO Xiangyu, et al . A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band[J]. IEEE Transactions on Antennas and Propagation , 2017, 65(6): 3024–3032. doi: 10.1109/TAP.2017.2694703 TIAN Jianghao, CAO Xiangyu, GAO Jun, et al . Design of a low loss and broadband active element of reconfigurable reflectarray antennas[J]. Optical Materials Express , 2019, 9(10): 4104–4114. doi: 10.1364/OME.9.004104 田江浩. 基于可重构技术的反射型多功能超表面特性研究[D]. [硕士论文], 空军工程大学, 2019.

TIAN Jianghao. Research on reflective multi-functional metasurface based on reconfigurable technology[D]. [Master dissertation], Air Force Engineering University, 2019. LI Tong, YANG Huanhuan, LI Qi, et al . Dual-polarised and ultra-thin broadband AAMCs for both P and L bands applications[J]. IET Microwaves , Antennas & Propagation , 2019, 13(2): 185–189. doi: 10.1049/iet-map.2018.5151 吕世奇. 基于数字电磁超表面涡旋电磁波的优化技术研究[D]. [硕士论文], 空军工程大学, 2019.

LÜ Shiqi. Research on optimization of vortex electromagnetic waves based on digital electromagnetic metasurface[D]. [Master dissertation], Air Force Engineering University, 2019. ZHANG Chen, GAO Jun, CAO Xiangyu, et al . Multifunction tunable metasurface for entire-space electromagnetic wave manipulation[J]. IEEE Transactions on Antennas and Propagation , 2020, 68(4): 3301–3306. doi: 10.1109/TAP.2019.2929438 CAI Tong, WANG Guangming, TANG Shiwei, et al . High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces[J]. Physical Review Applied , 2017, 8(3): 034033. doi: 10.1103/PhysRevApplied.8.034033 于惠存, 曹祥玉, 高军, 等. 一种宽带可重构反射型极化旋转表面[J]. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041

YU Huicun, CAO Xiangyu, GAO Jun, et al . Broadband reconfigurable reflective polarization convertor[J]. Acta Physica Sinica , 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041 YU Huicun, CAO Xiangyu, GAO Jun, et al . Design of a wideband and reconfigurable polarization converter using a manipulable metasurface[J]. Optical Materials Express , 2018, 8(11): 3373–3381. doi: 10.1364/OME.8.003373 TIAN Jianghao, CAO Xiangyu, GAO Jun, et al . A reconfigurable ultra-wideband polarization converter based on metasurface incorporated with PIN diodes[J]. Journal of Applied Physics , 2019, 125(13): 135105. doi: 10.1063/1.5067383 GUO Zexu, CAO Xiangyu, GAO Jun, et al . A novel reconfigurable metasurface with coincident and ultra- wideband LTL and LTC polarization conversion functions[J]. Radio Engineering , 2019, 28(4): 696–702. LI Tong, YANG Huanhuan, LI Qi, et al . Active metasurface for broadband radiation and integrated low radar cross section[J]. Optical Materials Express , 2019, 9(3): 1161–1172. doi: 10.1364/OME.9.001161 韩江枫. 电磁超表面幅相特性调控及应用研究[D]. [博士论文], 空军工程大学, 2020.

HAN Jiangfeng. Research on amplitude and phase characteristics of metasurfaces and its aoolications[D]. [Ph. D. dissertation], Air Force Engineering University, 2020. ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al . Multiple OAM vortex beams generation using 1-bit metasurface[J]. Optics Express , 2018, 26(19): 24804–24815. doi: 10.1364/OE.26.024804 ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al . Radiation performance synthesis for OAM vortex wave generated by reflective metasurface[J]. IEEE Access , 2018, 6: 28691–28701. doi: 10.1109/ACCESS.2018.2839099 ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al . Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface[J]. Chinese Physics B , 2019, 28(3): 034204. doi: 10.1088/1674-1056/28/3/034204 张迪. 新型数字电磁表面技术及其在涡旋电磁场中的应用研究[D]. [博士论文], 空军工程大学, 2019.

ZHANG Di. Research on novel digital electromagnetic metasurface and its application in vortex electromagnetic field[D]. [Ph. D. dissertation], Air Force Engineering University, 2019.