电学
无线通信
无线通信的历史
世界上任何一个地区的信息都能显示在电视机上,这种方便是电波带给我们的。
最早的
电波
实验是德国的赫兹在1888年进行的。通过实验,赫兹弄清了电波和光一样,具有直线传播,反射和
折射
现象。
频率的单位赫兹就是来自他的名字。
在杂志上读到过
赫兹实验
文章的意大利人马可尼,在1895年研制出了最早的无线电装置,利用这一装置在相隔大约3公里远的距离之间进行了
莫尔斯电码
通信实验。他想到了要把无线通信企业化,就成立了一个无线电报与信号公司。
尽管马可尼在无线通信领域获得了诸多成功,但由于与海底电缆公司的利益相冲突,他想在纽芬兰设立无线电报局的事遭到了反对,马可尼的反对者还不在少数。
2.高频波的产生
达德尔采用由线圈和电容器构成的电路产生出了高频信号,但频率还不到50KHZ,电流也只有2~3A,比较小。
1903年,荷兰的包鲁森利用
酒精
蒸气
电弧放电
产生出了1MHZ的高频波,彼得森又对其进行了改进,制成了输出功率达到1KW的装置。
其后,德国设计出了机械式高频发生装置,美国的斯特拉和费森登,德国的戈尔德施米特等人开发出了用高频交流机产生高频波的方法等,很多科学家和工程师都曾致力于高频波发生器的研究。
3.无线电话
如果传送的不是莫尔斯信号而是人的语言,那就需要有运载有信号的载波。载波必须是高频波。
1906年,
美国通用电气
(GE)公司的亚历山德森制成了80KHZ的高频信号发生装置,首次成功地进行了无线电话的实验。
用无线电话传送语音,并且要收听它,这就需要有用于发送的高频信号发生装置和用于接收的检波器。费森登设计了一种多差式接收装置,并于1913年试验成功。
达德尔设计出了以包鲁森电弧发送器为发送装置,以电解检波器为接收装置的受话器方式。在当时,由于都是采用火花
振荡器
,所以噪声很大,实验阶段可说是成功了,但离实用化还很远。
要想使产生的电波稳定,接收到的噪声小,还得等待
电子管
的出现。
4.二极管和三极管
1903年,爱迪生发现从电灯泡的热丝上飞溅出来的电子把灯泡的一部分都熏黑了,这种现象被称为
爱迪生效应
。
1904年,弗莱明从爱迪生效应得到启发,造出二极管,用它来进行检波。
1907年,美国的D。福雷斯特在二极管的
阳极
和
阴极
之间又加了一个叫做栅极的电极,发明了
三极管
。
这种三极管既可以用于放大信号电压,也可以配以适当的反馈电路产生稳定的高频信号,可说是一个划时代的电路元件。
三极管经过进一步的改进,能够产生短波,超短波等高频信号。此外,三极管具有能控制电子流的功能,随后出现的
阴极射线管
和
示波器
与此有密切的关系。
5.电池的历史
1790年,伽伐尼根据解剖青蛙实验提出了“动物电”,以此为开端,伏打发现了两种金属接触就有电产生的规律,可以说这就是电池的起源。
1799年,伏打在铜和锌之间夹入一层浸透盐水的纸,再把它们一层一层地迭起来,制成了“
伏打电堆
”。“电堆”的意思就是指把许多单个电池单元高高地堆在一起。
(1)一次电池
一次电池放完电后不能再用的电池称为一次电池。伏打对伏电电堆做了改进,制成了伏打电池。
1836年,英国人丹尼尔在陶瓷桶里放入阳极和氧化剂,制成了丹尼尔电池。与伏打电池相比,丹尼尔电池能长时间提供电流。
1868年,法国的勒克朗谢公布了勒克朗谢电池,1885年(明治18年)日本的尾井先藏发明了尾井乾电池。尾井乾电池是一种把电解液吸附在海绵里的特殊电池,具有搬运方便的特点。
1917年,法国的费里发明了空气电池,1940年,美国的鲁宾发明了水银电池。
(2)二次电池
放完电还可以充电再用的电池称为二次电池。1859年,法国的普朗泰发明了能够反复充电使用的铅蓄电池,其结构是稀硫酸中装有铅电极,这是最早的二次电池。如今,汽车里使用的就是这种类型的电池。
1897年(明治30年),日本的岛津源藏开发出了具有10A*H容量的铅蓄电池,并把他本人名字GENZO SIMAZU的字头GS作为商品名称,取名为GS电池投放市场。
1899年,瑞典的容纳制成了容纳电池,1905年爱迪生制成了爱迪生电池。这些电池的电解液都用的是
氢氧化钾
,后来就被称为碱性电池。
1948年,美国的纽曼发明了镍镉电池。这是一种能充电的干电池,是具有划时代意义的电池。
1939年,英国人格罗夫发现氧和氢的反应中有
电能
产生,并由实验证明了燃料电池的可能性。也就是说,电解水的时候消耗了电能而生成了氧和氢,反过来,从外部给阳极一侧送入氧,给阴极一侧送入氢,就能够产生电能和水。
格罗夫当时只是做了实验,并未实用化。1958年,剑桥大学(英国)制成了5KW的燃料电池。
1965年,美国GE公司成功地开发出了燃料电池,这个电池就安装在1965年的载人飞船双子星5号上,用于供给宇航员饮用水的飞船电能。1969年登上月球的阿波罗11号飞船上的电源也使用了燃料电池作为飞船内电源。
1873年,德国人西门子发明了用硒和铂丝制成的
光电
池。新型照相机曝光表上所用的就是这种硒光电池。
1945年,美国的夏品发明了
硅太阳能电池
,这是一种当太阳光或灯光照到其PN结上时能产生电能的元件,广泛用于人造卫星,
太阳能汽车
,钟表,台式
计算器
等。提高这种元件转换效率的研究与开发工作仍在进行中。
6.照明的历史
18世纪60年代由英国兴起的产业革命使工厂进入了连续加工,批量生产的时代,夜间照明成了重要问题。
前面已经讲过,英国人戴维1815年曾做过用2000个伏打电池产生电弧的有名实验。
(1)白炽灯泡
1860年,英国人斯旺把棉线碳化后做成灯丝装入玻璃泡里,发明了碳丝灯泡。
然而,由于当时的
真空技术
不高,点灯时间不能过长,时间一长,灯丝就会在灯泡里氧化而烧掉。
斯旺所想到的白炽灯泡的原理是如今市面上的白炽灯的起源。随着灯丝研究和真空技术的进步,白炽灯最终达到了实用化。从这点不说,斯旺的发明是一项大发明。
1865年,施普伦格尔为研究真空现象而开发出水银真空泵。斯旺知道这件事后,就在1878年把玻壳内的
真空度
提高,又在灯丝上下了一番功夫。他先把棉线用硫酸处理,然后再碳化,最后,他公布了斯旺灯泡。斯旺的白炽灯泡曾在巴黎
万国博览会
上展出。
1879年,美国的爱迪生成功地把白炽灯泡的寿命延长到了40小时以上。1880年,爱迪生发现竹子是做白炽灯灯丝的优良材料,就把日本,中国,印度的竹子收集起来反复进行实验。
爱迪生把部下穆尔派到日本,在京都的八幡寻找优质竹子,若干年后,用八幡竹子制造出了灯丝。为了制造这种竹灯丝的灯泡,1882年他在伦敦和纽约成立了爱迪生电灯公司。
在日本,1886年(明治19年)东京电灯公司成立,明治22年起,一般的家庭开始用上了白治灯泡。
1910年,美国的库利厅用钨丝做灯丝,发明了钨丝灯泡。
1913年,美国的兰米尔在玻壳里充入气体以防止灯丝蒸发,发明了充气钨丝灯泡。
1925年,日本的不破橘三发明了内壁磨砂灯泡。
1932年,日本的三浦顺一发明了双螺旋钨丝灯泡。
正是由于上述的不断探索,今天我们才能享受白炽灯照明的日常生活,想起来真是漫漫长路啊。
(2)放电灯
1902年,美国的休伊兹特在玻壳内装入水银蒸气,发明了
弧光放电
汞灯。由于这种汞灯在汞蒸气的气压较低时发出了紫外线较多,所以常作为杀菌灯使用。而当水银气压较高时,可发出很强的
可见光
。
现广泛用于广场照明和道路照明的高压汞灯所发出的光是一种混合光,混合光包括水银电弧放电的光和紫外线照到涂敷在玻壳内壁的
荧光材料
上所发出的光。
1932年,荷兰菲利浦公司开发出了波长为590nm单色的钠灯,这种灯广泛用于公路的隧道照明。
1938年,美国的英曼发明了当年广泛使用的荧光灯。这种灯通过用水银电弧放电发出的紫外线照射涂敷在灯管内壁的不同
荧光粉
而发出不同颜色的光。通常,白色荧光灯用得最多。
7.电力设备的历史
可以说,1820年奥斯特所发现的电磁作用就是电动机的起源。
而1831年法拉第所发现的电磁感应就是发电机的变压器的起源。
(1)发电机
1832年,法国人毕克西发明了手摇式
直流发电机
,其原理是通过
转动
永磁体使
磁通
发生变化而在线圈中产生
感应电动势
,并把这种电动势以直流电压形式输出。
1866年,德国的西门子发明了自励式直流发电机。
1869年,比利时的格拉姆制成了环形电枢,发明了环形电枢发电机。这种发电机是用水力来转动发电机转子的,经过反复改进,于1847年得到了3.2KW的
输出功率
。
1882年,美国的戈登制造出了输出功率447KW,高3米,重22吨的两相式巨型发电机。
美国的特斯拉在爱迪生公司的时候就决心开发
交流电机
,但由于爱迪生坚持只搞直流方式,因此他就把两相
交流发电机
和电动机的专利权卖给了西屋公司。
1896年,特斯拉的两相交流发电机在尼亚拉发电厂开始劳动营运,3750KW,5000V的交流电一直送到40公里外的布法罗市。
1889年,西屋公司在俄勒冈州建设了发电厂,1892年成功地将15000伏电压送到了皮茨菲尔德。
(2)电动机
1834年,俄罗斯的雅可比试制出了由
电磁铁
构成的
直流电动机
。1838年,这种电动机开动了一艘船,电动机电源用了320个电池。此外,美国的文波特和英国的戴比德逊也造出了直流电动机(1836年),用作印刷机的动力设备。由于这些电动机都以电池作为电源,所以未能广泛普及。
1887年,前面所讲过的特斯拉两相电动机作为实用化
感应电动机
的发展计划开始启动。1897年,西屋公司制成了感应电动机,设立专业公司致力于电动机的普及。
发电端在向外输送交流电的时候,要先把交流电压升高,到了用电端,又得把送来的交流电压降低。因此,变压器是必不可少的。
1831年,法拉第发现磁可以感应生成电,这就是变压器诞生的基础。
1882年,英国的吉布斯获得了“照明与动力用配电方式”专利,其内容就是将变压器用于配电,当时所用的变压器是
磁路
开放式变压器。
西屋引进了吉布斯的变压器,经过研究,于1885年开发出了实用的变压器。
此外,在此前一年的1884年,英国的霍普金森制成了闭合磁路式变压器。
(4)电力设备和三相交流技术
两相交流电是用四根电线输电的技术。德国的多勃罗沃尔斯基在绕组上想出了窍门,从绕组上每隔120度的三个地方引出抽头,得到了
三相交流电
。1889年,利用这种三相交流电的
旋转磁场
,制成了功率为100W的最早的三相交流电动机。
同年,多勃罗沃尔斯基又开发出了三相四线制交流接线方式,并在1891年的法兰克福输电实验(150VA三相变压器)中获得了圆满成功。
8.电子电路元器件的历史
当代,是包括计算机在内的电子学繁荣昌盛的时代,其背景与电子电路元器件由电子管-晶体管=
集成电路
的不断发展有着密切的关系。
电子管是沿着二极管-三极管-四极管-
五极管
的顺序发明出来的。
二极管:前面曾经讲过,爱迪生发现了电灯泡灯丝发射电子的“
爱迪生效应
”。1904年,英国人弗莱明受到“爱迪生效应”的启发,发明了二极管。
三极管:1907年,美国的福雷斯特发明了三极管。当时,真空技术尚不成熟,三极管的制造水平也不高。但在反复改进的过程中,人们懂得了三极管具有放大作用,终于拉开了电子学的帷幕。
振荡器也从上面所讲过的马可尼火花装置发展为三极管振荡器。三极管有三个电极,
阳极
,
阴极
和设置在二者之间的控制栅极,这个控制栅极是用来控制阴极所发射的电子流的。
四极管:1915年,英国的朗德在三极管的控制栅极与阳极之间又加了一个电极,称为帘栅极,其作用是解决三极管中流向阳极的电子流中有一部分会流到控制栅极上去的问题。
五极管:1927年,德国的约布斯特在阳极与帘栅极之间又加了一个电极,发明了五极管。新加的电极被称为抑制栅。加入这个电极的原因是:在四极管中,电子流撞到
阳极
上时阳极会产生
二次电子
发射,抑制栅就是为抑制这种二次电子发射而设置的。
此外,1934年美国的汤绿森通过对电子管进行小型化改进,发明了适用于超短波的橡实管。
管壳不用玻璃而采用金属的ST管发明于1937年,经小型化后的MT管发明于1939年。
半导体器件大致分为晶体管和集成电路(IC)两大部分。
第二次世界大战
后,由于半导体技术的进步,电子学得到了令人瞩目的发展。
这种晶体管的结构是使两根金属丝与低掺杂
锗半导体
表面接触,称为接触型晶体管。
1949年,开发出了结型晶体管,在实用化方面前进了一大步。
1956年开发出了制造P型和N型半导体的
扩散
法。它是在高温下将杂质原子渗透到半导体表层的一种方法。1960年开发出了
外延生长
法并制成了外延平面型晶体管。外延生长法是把硅晶体放在氢气和
卤化物
气体中来制造半导体的一种方法。
有了半导体技术的这些发展,随之就诞生了集成电路。
大约在1956年,英国的达马就从晶体管原理预想到了集成电路的出现。
1958年美国提出了用半导体制造全部电路元器件,实现集成电路化的方案。
1961年,得克萨斯仪器公司开始批量生产集成电路。
集成电路并不是用一个一个电路元器件连接成的电路,而是把具有某种功能的电路“埋”在半导体晶体里的一个器件。它易于小型化和减少引线端,所以具有可靠性高的优点。
集成电路的集成度在逐年增加。元件数在100个以下的
小规模集成电路
,100~1000个的
中规模集成电路
,1000~100000个大规模集成电路,以及100000个以上的
超大规模集成电路
,都已依次开发出来,并在各种装置中获得了广泛应用。
电学
电阻
电阻(R):表示导体对电流的
阻碍作用
。(导体如果对电流的阻碍作用越大,那么电阻就越大,而通过导体的电流就越小).
国际单位:欧姆(Ω);常用:兆欧(MΩ),千欧(KΩ);1兆欧=1000千欧;
1千欧=1000欧。
决定电阻大小的因素:材料,长度,
横截面积
和温度(R与它的U和I无关).
作用:通过改变接入电路中的电阻来改变电路中的电流和电压。
铭牌:如一个滑动变阻器标有"50Ω 2A"表示的意义是:最大阻值是50Ω,允许通过的最大电流是2A.
正确使用:a,应串联在电路中使用;b,接线要"一上一下";c,通电前应把阻值调至最大的地方。
电学
电功和电功率
1.
电功
(W):电能转化成其他形式能的多少叫电功,
2.功的国际单位:
焦耳
.常用:度(
千瓦
时),1度=1千瓦时=3.6×10^6焦耳。
4.电功公式:W=Pt=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒).
利用W=UIt计算时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。还有公式:=I2Rt
电功率
(P):表示电流
做功
的快慢。国际单位:
瓦特
(W);常用:千瓦
公式:式中单位P→瓦(w);W→焦;t→秒;U→伏(V),I→安(A)
利用计算时单位要统一,①如果W用焦,t用秒,则P的单位是瓦;②如果W用千瓦时,t用小时,则P的单位是千瓦。
10.计算电功率还可用右公式:
11.额定电压(U0):用电器正常工作的电压。另有:额定电流
12.额定功率(P0):用电器在额定电压下的功率。
13.实际电压(U):实际加在用电器两端的电压。另有:实际电流
14.
实际功率
(P):用电器在实际电压下的功率。
当
;灯很亮,易烧坏.
当
;灯很暗,
当
;正常发光。
15.同一个电阻,接在不同的电压下使用,则有;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4.例"220V100W"如果接在110伏的电路中,则实际功率是25瓦。
16.热功率:导体的热功率跟电流的二次方成正比,跟导体的电阻成正比。
17.P热公式:
,(式中单位P→瓦(W);I→安(A);R→欧(Ω);t→秒)
18.当电流通过导体做的功(电功)全部用来产生热量(
电热
),则有:热功率=电功率,可用电功率公式来计算热功率。(如电热器,电阻就是这样的。)
电学
电和磁
磁性:物体吸引铁,镍,钴等物质的性质。
磁体
:具有磁性的物体叫磁体。它有
指向性
:指南北.
任何磁体都有两个磁极,一个是北极(N极);另一个是南极(S极)
磁极间的作用:同名磁极互相排斥,异名磁极互相吸引。
磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的.
磁场的基本性质:对入其中的磁体产生
磁力
的作用。
磁场的方向:小
磁针
静止时北极所指的方向就是该点的磁场方向。
磁感线:描述磁场的强弱,方向的假想曲线。不存在且不相交,北出南进.
磁场中某点的磁场方向,磁感线方向,小磁针静止时北极指的方向相同。
地磁的北极在地理位置的南极附近;而地磁的南极则在地理的北极附近。但并不重合,它们的交角称
磁偏角
,中国学者沈括最早记述这一现象。
安培定则
:用右手握
螺线管
,让四指弯向螺线管中电流方向,则大拇指所指的那端就是螺线管的北极(N极).
通电螺线管
的性质:①通过电流越大,磁性越强;②
线圈匝数
越多,磁性越强;③插入软铁芯,磁性大大增强;④通电螺线管的极性可用电流方向来改变。
电磁铁:内部带有铁芯的螺线管就构成电磁铁。
电磁铁的特点:①磁性的有无可由电流的通断来控制;②磁性的强弱可由改变电流大小和线圈的匝数来调节;③磁极可由电流方向来改变。
电磁继电器
:实质上是一个利用电磁铁来控制的开关。它的作用可实现远距离操作,利用低电压,弱电流来控制高电压,强电流。还可实现自动控制。
电话基本原理:振动→强弱变化电流→振动。
电磁感应:闭合电路的一部分导体在磁场中做
切割磁感线运动
时,导体中就产生电流,这种现象叫电磁感应,产生的电流叫
感应电流
。应用:发电机
感应电流的条件:①电路必须闭合;②只是电路的一部分导体在磁场中;③这部分导体做切割磁感线运动.
感应电流的方向:跟导体运动方向和磁感线方向有关。
发电机的原理:
电磁感应现象
。结构:定子和转子。它将机械能转化为电能.
磁场对电流的作用:通电导线在磁场中要受到磁力的作用。是由电能转化为机械能。应用:电动机。
通电导体在磁场中受力方向:跟电流方向和磁感线方向有关.