1.
Hemphill JC 3rd, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American heart association/American stroke association.
Stroke.
2015;
46
(7):2032–60. doi: 10.1161/STR.0000000000000069.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Coles JP. Imaging after brain injury.
Br J Anaesth.
2007;
99
(1):49–60. doi: 10.1093/bja/aem141.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
Elliott J, Smith M. The acute management of intracerebral hemorrhage: a clinical review.
Anesth Analg.
2010;
110
(5):1419–27. doi: 10.1213/ANE.0b013e3181d568c8.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Fujitsu K, Muramoto M, Ikeda Y, et al. Indications for surgical treatment of putaminal hemorrhage. Comparative study based on serial CT and time-course analysis.
J Neurosurg.
1990;
73
(4):518–25. doi: 10.3171/jns.1990.73.4.0518.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Kuo WC, Häne C, Mukherjee P, et al. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning.
PNAS.
2019;
116
(45):22737–45. doi: 10.1073/pnas.1908021116.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Ker J, Singh SP, Bai YQ, et al. Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans.
Sensors (Basel)
2019;
19
(9):2167. doi: 10.3390/s19092167.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Lee JY, Kim JS, Kim TY, et al. Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm.
Sci Rep.
2020;
10
(1):20546. doi: 10.1038/s41598-020-77441-z.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Wang XY, Shen T, Yang S, et al. A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans.
Neuroimage Clin.
2021;
32
:102785. doi: 10.1016/j.nicl.2021.102785.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Nguyen TN, Tran QD, Nguyen TN, et al. A CNN-LSTM architecture for detection of intracranial hemorrhage on CT scans[J]. ArXiv, 2020, https://doi.org/10.1101/2020.04.17.20070193.
11.
Chilamkurthy S, Ghosh R, Tanamala S, et al. Development and validation of deep learning algorithms for detection of critical findings in head CT scans[J]. ArXiv, 2018, 1803.05854.
12.
Li JQ, Fu GH, Chen YD, et al. A multi-label classification model for full slice brain computerised tomography image.
BMC Bioinformatics.
2020;
21
(Suppl 6):200. doi: 10.1186/s12859-020-3503-0.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
Berrington de González A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries.
Lancet.
2004;
363
(9406):345–51. doi: 10.1016/S0140-6736(04)15433-0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
Brenner DJ, Hall EJ. Computed tomography: an increasing source of radiation exposure.
N Engl J Med.
2007;
357
(22):2277–84. doi: 10.1056/NEJMra072149.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Chaudhury S, Yamasaki T. Robustness of adaptive neural network optimization under training noise.
IEEE Access.
2021;
9
:37039–53. doi: 10.1109/ACCESS.2021.3062990.
[
CrossRef
]
[
Google Scholar
]
17.
Su JW, Vargas DV, Sakurai K. One pixel attack for fooling deep neural networks.
IEEE Trans Evol Comput.
2019;
23
(5):828–41. doi: 10.1109/TEVC.2019.2890858.
[
CrossRef
]
[
Google Scholar
]
18.
Chen A, Li C, Chen HY, et al. A comparison for anti-noise robustness of deep learning classification methods on a tiny object image dataset: from convolutional neural network to visual transformer and performer[J]. ArXiv, 2021: 106.01927.
19.
Cao KL, Liu MC, Su H, et al. Analyzing the noise robustness of deep neural networks.
IEEE Trans Vis Comput Graph.
2021;
27
(7):3289–304. doi: 10.1109/TVCG.2020.2969185.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Pal B, Gupta D, Rashed-Al-Mahfuz M, et al. Vulnerability in deep transfer learning models to adversarial fast gradient sign attack for COVID-19 prediction from chest radiography images.
Appl Sci.
2021;
11
(9):4233. doi: 10.3390/app11094233.
[
CrossRef
]
[
Google Scholar
]
21.
Paul R, Schabath M, Gillies R, et al. Mitigating adversarial attacks on medical image understanding systems[C]//2020 IEEE 17th International Symposium on Biomedical Imaging. April 3-7, 2020, Iowa City, IA, USA. IEEE, 2020: 1517-21.
22.
Shen CY, Tsai MY, Chen LY, et al. On the robustness of deep learning-based lung-nodule classification for CT images with respect to image noise.
Phys Med Biol.
2020;
65
(24):245037. doi: 10.1088/1361-6560/abc812.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
McCollough CH, Bruesewitz MR, Kofler JM Jr. CT dose reduction and dose management tools: overview of available options.
Radiographics.
2006;
26
(2):503–12. doi: 10.1148/rg.262055138.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms.
Phys D Nonlinear Phenom.
1992;
60
doi: 10.1016/0167-2789(92)90242-F.
[
CrossRef
]
[
Google Scholar
]
25.
Buades A, Coll B, Morel JM. Non-local means denoising.
Image Process Line.
2011;
1
:208–12. doi: 10.5201/ipol.2011.bcm_nlm.
[
CrossRef
]
[
Google Scholar
]
26.
Zhao TT, Hoffman J, Mcnitt-Gray M, et al. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
Med Phys.
2019;
46
(1):190–8. doi: 10.1002/mp.13252.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
Chen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network.
IEEE Trans Med Imaging.
2017;
36
(12):2524–35. doi: 10.1109/TMI.2017.2715284.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
Jin KH, McCann MT, Froustey E, et al. Deep convolutional neural network for inverse problems in imaging.
IEEE Trans Image Process.
2017;
26
(9):4509–22. doi: 10.1109/TIP.2017.2713099.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
Wang YB, Liao YT, Zhang YK, et al. Iterative quality enhancement via residual-artifact learning networks for low-dose CT.
Phys Med Biol.
2018;
63
(21):215004. doi: 10.1088/1361-6560/aae511.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
30.
Zeng D, Huang J, Bian ZY, et al. A simple low-dose X-ray CT simulation from high-dose scan.
IEEE Trans Nucl Sci.
2015;
62
(5):2226–33. doi: 10.1109/TNS.2015.2467219.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
Ma JH, Liang ZR, Fan Y, et al. Variance analysis of X-ray CT sinograms in the presence of electronic noise background.
Med Phys.
2012;
39
(7):4051–65. doi: 10.1118/1.4722751.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-8.
33.
Ronneberger O, Fischer P, Brox T.
U-net: convolutional networks for biomedical image segmentation.
Cham: Springer International Publishing; 2015. pp. 234–41.
[
Google Scholar
]
34.
Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study.
Lancet.
2018;
392
(10162):2388–96. doi: 10.1016/S0140-6736(18)31645-3.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]