class SuperResolutionNet(nn.Module):
def __init__(self, upscale_factor):
super().__init__()
self.upscale_factor = upscale_factor
self.img_upsampler = nn.Upsample(
scale_factor=self.upscale_factor,
mode='bicubic',
align_corners=False)
def init_torch_model():
torch_model = SuperResolutionNet(upscale_factor=3)
我们使用 upscale_factor 来控制模型的放大比例。初始化模型的时候,我们默认令 upscale_factor 为 3,生成了一个放大 3 倍的 PyTorch 模型。这个 PyTorch 模型最终被转换成了 ONNX 格式的模型。如果我们需要一个放大 4 倍的模型,需要重新生成一遍模型,再做一次到 ONNX 的转换。
现在,假设我们要做一个超分辨率的应用。我们的用户希望图片的放大倍数能够自由设置。而我们交给用户的,只有一个 .onnx 文件和运行超分辨率模型的应用程序。我们在不修改 .onnx 文件的前提下改变放大倍数。
因此,我们必须修改原来的模型,令模型的放大倍数变成推理时的输入。在上一篇文章中的 Python 脚本的基础上,我们做一些修改,得到这样的脚本:
import torch
from torch import nn
from torch.nn.functional import interpolate
import torch.onnx
import cv2
import numpy as np
class SuperResolutionNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=9, padding=4)
self.conv2 = nn.Conv2d(64, 32, kernel_size=1, padding=0)
self.conv3 = nn.Conv2d(32, 3, kernel_size=5, padding=2)
self.relu = nn.ReLU()
def forward(self, x, upscale_factor):
x = interpolate(x,
scale_factor=upscale_factor,
mode='bicubic',
align_corners=False)
out = self.relu(self.conv1(x))
out = self.relu(self.conv2(out))
out = self.conv3(out)
return out
def init_torch_model():
torch_model = SuperResolutionNet()
state_dict = torch.load('srcnn.pth')['state_dict']
# Adapt the checkpoint
for old_key in list(state_dict.keys()):
new_key = '.'.join(old_key.split('.')[1:])
state_dict[new_key] = state_dict.pop(old_key)
torch_model.load_state_dict(state_dict)
torch_model.eval()
return torch_model
model = init_torch_model()
input_img = cv2.imread('face.png').astype(np.float32)
# HWC to NCHW
input_img = np.transpose(input_img, [2, 0, 1])
input_img = np.expand_dims(input_img, 0)
# Inference
torch_output = model(torch.from_numpy(input_img), 3).detach().numpy()
# NCHW to HWC
torch_output = np.squeeze(torch_output, 0)
torch_output = np.clip(torch_output, 0, 255)
torch_output = np.transpose(torch_output, [1, 2, 0]).astype(np.uint8)
# Show image
cv2.imwrite("face_torch_2.png", torch_output)
SuperResolutionNet 未修改之前,nn.Upsample 在初始化阶段固化了放大倍数,而 PyTorch 的 interpolate 插值算子可以在运行阶段选择放大倍数。因此,我们在新脚本中使用 interpolate 代替 nn.Upsample,从而让模型支持动态放大倍数的超分。 在第 55 行使用模型推理时,我们把放大倍数设置为 3。最后,图片保存在文件 "face_torch_2.png" 中。一切正常的话,"face_torch_2.png" 和 "face_torch.png" 的内容一模一样。
通过简单的修改,PyTorch 模型已经支持了动态分辨率。现在我们来尝试一下导出模型:
x = torch.randn(1, 3, 256, 256)
with torch.no_grad():
torch.onnx.export(model, (x, 3),
"srcnn2.onnx",
opset_version=11,
input_names=['input', 'factor'],
output_names=['output'])
运行这些脚本时,会报一长串错误。没办法,我们碰到了模型部署中的兼容性问题。
解决方法:自定义算子
直接使用 PyTorch 模型的话,我们修改几行代码就能实现模型输入的动态化。但在模型部署中,我们要花数倍的时间来设法解决这一问题。现在,让我们顺着解决问题的思路,体验一下模型部署的困难,并学习使用自定义算子的方式,解决超分辨率模型的动态化问题。
刚刚的报错是因为 PyTorch 模型在导出到 ONNX 模型时,模型的输入参数的类型必须全部是 torch.Tensor。而实际上我们传入的第二个参数" 3 "是一个整形变量。这不符合 PyTorch 转 ONNX 的规定。我们必须要修改一下原来的模型的输入。为了保证输入的所有参数都是 torch.Tensor 类型的,我们做如下修改:
class SuperResolutionNet(nn.Module):
def forward(self, x, upscale_factor):
x = interpolate(x,
scale_factor=upscale_factor.item(),
mode='bicubic',
align_corners=False)
# Inference
# Note that the second input is torch.tensor(3)
torch_output = model(torch.from_numpy(input_img), torch.tensor(3)).detach().numpy()
with torch.no_grad():
torch.onnx.export(model, (x, torch.tensor(3)),
"srcnn2.onnx",
opset_version=11,
input_names=['input', 'factor'],
output_names=['output'])
由于 PyTorch 中 interpolate 的 scale_factor 参数必须是一个数值,我们使用 torch.Tensor.item() 来把只有一个元素的 torch.Tensor 转换成数值。之后,在模型推理时,我们使用 torch.tensor(3) 代替 3,以使得我们的所有输入都满足要求。现在运行脚本的话,无论是直接运行模型,还是导出 ONNX 模型,都不会报错了。
但是,导出 ONNX 时却报了一条 TraceWarning 的警告。这条警告说有一些量可能会追踪失败。这是怎么回事呢?让我们把生成的 srcnn2.onnx 用 Netron 可视化一下:
可以发现,虽然我们把模型推理的输入设置为了两个,但 ONNX 模型还是长得和原来一模一样,只有一个叫 " input " 的输入。这是由于我们使用了 torch.Tensor.item() 把数据从 Tensor 里取出来,而导出 ONNX 模型时这个操作是无法被记录的,只好报了一条 TraceWarning。这导致 interpolate 插值函数的放大倍数还是被设置成了" 3 "这个固定值,我们导出的" srcnn2.onnx "和最开始的" srcnn.onnx "完全相同。
直接修改原来的模型似乎行不通,我们得从 PyTorch 转 ONNX 的原理入手,强行令 ONNX 模型明白我们的想法了。
仔细观察 Netron 上可视化出的 ONNX 模型,可以发现在 PyTorch 中无论是使用最早的 nn.Upsample,还是后来的 interpolate,PyTorch 里的插值操作最后都会转换成 ONNX 定义的 Resize 操作。也就是说,所谓 PyTorch 转 ONNX,实际上就是把每个 PyTorch 的操作映射成了 ONNX 定义的算子。
点击该算子,可以看到它的详细参数如下:
其中,展开 scales,可以看到 scales 是一个长度为 4 的一维张量,其内容为 [1, 1, 3, 3], 表示 Resize 操作每一个维度的缩放系数;其类型为 Initializer,表示这个值是根据常量直接初始化出来的。如果我们能够自己生成一个 ONNX 的 Resize 算子,让 scales 成为一个可变量而不是常量,就像它上面的 X 一样,那这个超分辨率模型就能动态缩放了。
现有实现插值的 PyTorch 算子有一套规定好的映射到 ONNX Resize 算子的方法,这些映射出的 Resize 算子的 scales 只能是常量,无法满足我们的需求。我们得自己定义一个实现插值的 PyTorch 算子,然后让它映射到一个我们期望的 ONNX Resize 算子上。
下面的脚本定义了一个 PyTorch 插值算子,并在模型里使用了它。我们先通过运行模型来验证该算子的正确性:
import torch
from torch import nn
from torch.nn.functional import interpolate
import torch.onnx
import cv2
import numpy as np
class NewInterpolate(torch.autograd.Function):
@staticmethod
def symbolic(g, input, scales):
return g.op("Resize",
input,
g.op("Constant",
value_t=torch.tensor([], dtype=torch.float32)),
scales,
coordinate_transformation_mode_s="pytorch_half_pixel",
cubic_coeff_a_f=-0.75,
mode_s='cubic',
nearest_mode_s="floor")
@staticmethod
def forward(ctx, input, scales):
scales = scales.tolist()[-2:]
return interpolate(input,
scale_factor=scales,
mode='bicubic',
align_corners=False)
class StrangeSuperResolutionNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=9, padding=4)
self.conv2 = nn.Conv2d(64, 32, kernel_size=1, padding=0)
self.conv3 = nn.Conv2d(32, 3, kernel_size=5, padding=2)
self.relu = nn.ReLU()
def forward(self, x, upscale_factor):
x = NewInterpolate.apply(x, upscale_factor)
out = self.relu(self.conv1(x))
out = self.relu(self.conv2(out))
out = self.conv3(out)
return out
def init_torch_model():
torch_model = StrangeSuperResolutionNet()
state_dict = torch.load('srcnn.pth')['state_dict']
# Adapt the checkpoint
for old_key in list(state_dict.keys()):
new_key = '.'.join(old_key.split('.')[1:])
state_dict[new_key] = state_dict.pop(old_key)
torch_model.load_state_dict(state_dict)
torch_model.eval()
return torch_model
model = init_torch_model()
factor = torch.tensor([1, 1, 3, 3], dtype=torch.float)
input_img = cv2.imread('face.png').astype(np.float32)
# HWC to NCHW
input_img = np.transpose(input_img, [2, 0, 1])
input_img = np.expand_dims(input_img, 0)
# Inference
torch_output = model(torch.from_numpy(input_img), factor).detach().numpy()
# NCHW to HWC
torch_output = np.squeeze(torch_output, 0)
torch_output = np.clip(torch_output, 0, 255)
torch_output = np.transpose(torch_output, [1, 2, 0]).astype(np.uint8)
# Show image
cv2.imwrite("face_torch_3.png", torch_output)
模型运行正常的话,一幅放大3倍的超分辨率图片会保存在"face_torch_3.png"中,其内容和"face_torch.png"完全相同。
在刚刚那个脚本中,我们定义 PyTorch 插值算子的代码如下:
class NewInterpolate(torch.autograd.Function):
@staticmethod
def symbolic(g, input, scales):
return g.op("Resize",
input,
g.op("Constant",
value_t=torch.tensor([], dtype=torch.float32)),
scales,
coordinate_transformation_mode_s="pytorch_half_pixel",
cubic_coeff_a_f=-0.75,
mode_s='cubic',
nearest_mode_s="floor")
@staticmethod
def forward(ctx, input, scales):
scales = scales.tolist()[-2:]
return interpolate(input,
scale_factor=scales,
mode='bicubic',
align_corners=False)
在具体介绍这个算子的实现前,让我们先理清一下思路。我们希望新的插值算子有两个输入,一个是被用于操作的图像,一个是图像的放缩比例。前面讲到,为了对接 ONNX 中 Resize 算子的 scales 参数,这个放缩比例是一个 [1, 1, x, x] 的张量,其中 x 为放大倍数。在之前放大3倍的模型中,这个参数被固定成了[1, 1, 3, 3]。因此,在插值算子中,我们希望模型的第二个输入是一个 [1, 1, w, h] 的张量,其中 w 和 h 分别是图片宽和高的放大倍数。
搞清楚了插值算子的输入,再看一看算子的具体实现。算子的推理行为由算子的 foward 方法决定。该方法的第一个参数必须为 ctx,后面的参数为算子的自定义输入,我们设置两个输入,分别为被操作的图像和放缩比例。为保证推理正确,需要把 [1, 1, w, h] 格式的输入对接到原来的 interpolate 函数上。我们的做法是截取输入张量的后两个元素,把这两个元素以 list 的格式传入 interpolate 的 scale_factor 参数。
接下来,我们要决定新算子映射到 ONNX 算子的方法。映射到 ONNX 的方法由一个算子的 symbolic 方法决定。symbolic 方法第一个参数必须是g,之后的参数是算子的自定义输入,和 forward 函数一样。ONNX 算子的具体定义由 g.op 实现。g.op 的每个参数都可以映射到 ONNX 中的算子属性:
对于其他参数,我们可以照着现在的 Resize 算子填。而要注意的是,我们现在希望 scales 参数是由输入动态决定的。因此,在填入 ONNX 的 scales 时,我们要把 symbolic 方法的输入参数中的 scales 填入。
接着,让我们把新模型导出成 ONNX 模型:
x = torch.randn(1, 3, 256, 256)
with torch.no_grad():
torch.onnx.export(model, (x, factor),
"srcnn3.onnx",
opset_version=11,
input_names=['input', 'factor'],
output_names=['output'])
把导出的 " srcnn3.onnx " 进行可视化:
可以看到,正如我们所期望的,导出的 ONNX 模型有了两个输入!第二个输入表示图像的放缩比例。
之前在验证 PyTorch 模型和导出 ONNX 模型时,我们宽高的缩放比例设置成了 3x3。现在,在用 ONNX Runtime 推理时,我们尝试使用 4x4 的缩放比例:
import onnxruntime
input_factor = np.array([1, 1, 4, 4], dtype=np.float32)
ort_session = onnxruntime.InferenceSession("srcnn3.onnx")
ort_inputs = {'input': input_img, 'factor': input_factor}
ort_output = ort_session.run(None, ort_inputs)[0]
ort_output = np.squeeze(ort_output, 0)
ort_output = np.clip(ort_output, 0, 255)
ort_output = np.transpose(ort_output, [1, 2, 0]).astype(np.uint8)
cv2.imwrite("face_ort_3.png", ort_output)
运行上面的代码,可以得到一个边长放大4倍的超分辨率图片 "face_ort_3.png"。动态的超分辨率模型生成成功了!只要修改 input_factor,我们就可以自由地控制图片的缩放比例。
我们刚刚的工作,实际上是绕过 PyTorch 本身的限制,凭空“捏”出了一个 ONNX 算子。事实上,我们不仅可以创建现有的 ONNX 算子,还可以定义新的 ONNX 算子以拓展 ONNX 的表达能力。后续教程中我们将介绍自定义新 ONNX 算子的方法。
通过学习前两篇教程,我们走完了整个部署流水线,成功部署了支持动态放大倍数的超分辨率模型。在这个过程中,我们既学会了如何简单地调用各框架的API实现模型部署,又学到了如何分析并尝试解决模型部署时碰到的难题。
同样,让我们总结一下本篇教程的知识点:
- 模型部署中常见的几类困难有:模型的动态化;新算子的实现;框架间的兼容。
- PyTorch 转 ONNX,实际上就是把每一个操作转化成 ONNX 定义的某一个算子。比如对于 PyTorch 中的 Upsample 和 interpolate,在转 ONNX 后最终都会成为 ONNX 的 Resize 算子。
- 通过修改继承自 torch.autograd.Function 的算子的 symbolic 方法,可以改变该算子映射到 ONNX 算子的行为。
至此,"部署第一个模型“的教程算是告一段落了。是不是觉得学到的知识还不够多?没关系,在接下来的几篇教程中,我们将结合模型部署开源库 MMDeploy ,重点介绍 ONNX 中间表示和 ONNX Runtime/TensorRT 推理引擎的知识,让大家学会如何部署更复杂的模型。敬请期待!
文章目录一、TF Serving1.安装2.搭建服务(1)构建模型(2)保存模型(3)运行TF Model Server3.使用服务(1)将数据传递给服务器(2)从服务器获取结果二、Tensorflow_hub三、Tensorboard四、联邦学习(federated learning)
一、TF Serving
Tensorflow Serving是TFX(Tensorflow Extended)的一部分,是一个专门为生产环境下机器学习服务的API,使用TF Serving,可以在云平台通过HTTP来访问
蓝绿部署
蓝绿部署是不停老版本,部署新版本然后进行测试。确认OK后将流量切到新版本,然后老版本同时也升级到新版本。蓝绿部署无需停机,并且风险较小。最后,注意使用条件,需要有两倍的机器资源。
Tag: 全量切换
部署版本 1 的应用(初始的状态)
所有外部请求的流量都打到这个版本上。
部署版本 2 的应用
版本 2 的代码与版本 1 不同(新功能、Bug修复等)。
将流量从版本 1 切换到版
对于新训练完的模型进行通信传输(磁盘io或者网络io),这里可以考虑类似于k8或者hdfs这些大数据或者云计算的工具,将模型存储于分布式环境,
即模型从内存 ---> 缓存端(hdfs或其他s3等介质中,甚至说是磁盘)
1.2 模型文件传输
系统部署..
模型训练重点关注的是如何通过训练策略来得到一个性能更好的模型,其过程似乎包含着各种“玄学”,被戏称为“炼丹”。整个流程包含从训练样本的获取(包括数据采集与标注),模型结构的确定,损失函数和评价指标的确定,到模型参数的训练,这部分更多是业务方去承接相关工作。一旦“炼丹”完成(即训练得到了一个指标不错的模型),如何将这颗“丹药”赋能到实际业务中,充分发挥其能力,这就是部署方需要承接的工作。
因此,一般来说,学术界负责各种 SOTA(State of the Art) 模型的训练和结构探索,而工业界负责将这些
Mediapipe是Google开源的一个跨平台模型部署项目
,Mediapipe还提供了大量的开源模型。我们能够很方便的使用MediaPipe将模型部署在Android、IOS、Desktop、Web以及IOT设备上。
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达作者:Francesco Zuppichini编译:ronghuaiyang导读演示了使用PyTorch最近发布的新工具torchserve来进行PyTorch模型的部署。最近,PyTorch推出了名为torchserve.的新生产框架来为模型提供服务。我们看一下今天的roadmap:1、使用Docke...
一、模型部署简介近几年来,随着算力的不断提升和数据的不断增长,深度学习算法有了长足的发展。深度学习算法也越来越多的应用在各个领域中,比如图像处理在安防领域和自动驾驶领域的应用,再比如语音处...
OpenMMLab 的算法如何部署?是很多社区用户的困惑。而模型部署工具箱 MMDeploy的开源,强势打通了从算法模型到应用程序这 "最后一公里"!
今天我们将开启模型部署入门系列教程,在模型部署开源库 MMDeploy 的辅助下,介绍以下内容:
中间表示 ONNX 的定义标准
PyTorch 模型转换到 ONNX 模型的方法
推理引擎 ONNX Runtime、TensorRT 的使用方法
部署流水线 PyTorch - ONNX - ONNX Runtime/TensorRT 的示.
机器学习问题不仅是一个科学问题,更是一个工程问题。
大多数年轻的数据科学家都希望将大部分时间花在构建完美的机器学习模型上,但是企业不仅需要训练一个完美的模型,同时也需要将其部署,向用户提供便捷的服务。
如下图所示,机器学习系统由机器学习代只包含一小部分,而在中间的小黑匣子周围,所需要的基础设施庞大而复杂。
因此,在实际应用中,一个优秀的程序员不仅要学会构建完美的机器学习模型上,同时还需要将其部署...
恭喜!您已构建并部署了第一个CNN模型。继续尝试写出不同的数字,看看你的模型是否能够预测。您的模型会有错误的预测。您可以保存模型预测不正确的数字,也可以使用这些示例扩充训练集。您也可以尝试使用不同的参数训练模型,或者使用完全不同的模...